
Bro Reference Manual
for version 0.8-alpha, 6-1-2004

Vern Paxson, Brian Tierney
Contact: vern@icir.org)
http://www.bro-ids.org/

mailto:vern@icir.org
http://www.bro-ids.org/

This the Installation and User Manual is for Bro-Lite (version 0.8-alpha, 6-1-2004).
This software is copyright c© by (add copyright here)
For further information about this notice, contact:
Vern Paxson email: vern@icir.org

mailto:vern@icir.org

i

Table of Contents

Figures and Tables . 1

1 Introduction . 2

2 Getting Started . 5
2.1 Running Bro . 5

2.1.1 Building and installing Bro . 5
2.1.1.1 Supported platforms . 5
2.1.1.2 The Bro source code distribution . 5
2.1.1.3 Installing Bro . 5
2.1.1.4 Tuning BPF . 6

2.1.2 Using Bro interactively . 7
2.1.3 Specifying policy scripts . 8
2.1.4 Running Bro on network traffic . 8

2.1.4.1 Live traffic . 8
2.1.4.2 Traffic traces . 9

2.1.5 Modifying Bro policy. 9
2.1.6 Bro flags and run-time environment . 10

2.1.6.1 Flags . 10
2.1.6.2 Run-time environment . 12

2.2 Helper utilities . 13
2.2.1 Scripts . 13
2.2.2 The hf utility . 13
2.2.3 The cf utility . 13

3 Values, Types, and Constants 14
3.1 Values Overview . 14

3.1.1 Bro Types . 14
3.1.2 Type Conversions . 15

3.2 Booleans . 15
3.2.1 Boolean Constants . 15
3.2.2 Logical Operators . 15

3.3 Numeric Types . 15
3.3.1 Numeric Constants . 15
3.3.2 Mixing Numeric Types . 16
3.3.3 Arithmetic Operators . 16
3.3.4 Comparison Operators . 16

3.4 Enumerations . 17
3.5 Strings . 17

3.5.1 String Constants . 17
3.5.2 String Operators . 17

3.6 Patterns . 18

ii

3.6.1 Pattern Constants . 18
3.6.2 Pattern Operators . 18

3.6.2.1 Exact Pattern Matching . 19
3.6.2.2 Embedded Pattern Matching . 19

3.7 Temporal Types . 19
3.7.1 Temporal Constants . 19
3.7.2 Temporal Operators . 20

3.7.2.1 Temporal Negation . 20
3.7.2.2 Temporal Addition . 20
3.7.2.3 Temporal Subtraction . 20
3.7.2.4 Temporal Multiplication . 20
3.7.2.5 Temporal Division . 20
3.7.2.6 Temporal Relationals . 20

3.8 Port Type . 21
3.8.1 Port Constants . 21
3.8.2 Port Operators . 21

3.9 Address Type . 21
3.9.1 Address Constants . 21
3.9.2 Address Operators . 22

3.10 Net Type . 22
3.10.1 Net Constants . 22
3.10.2 Net Operators . 22

3.11 Records . 23
3.11.1 Defining records . 23
3.11.2 Record Constants . 23
3.11.3 Accessing Fields Using “$” . 24
3.11.4 Record Assignment . 24

3.12 Tables . 25
3.12.1 Declaring Tables . 25
3.12.2 Initializing Tables . 26
3.12.3 Table Attributes . 27
3.12.4 Accessing Tables . 28
3.12.5 Table Assignment . 29
3.12.6 Deleting Table Elements . 29

3.13 Sets . 29
3.14 Files . 30
3.15 Functions . 31
3.16 Event handlers . 32
3.17 The any type . 33

4 Statements and Expressions 34
4.1 Statements . 34
4.2 Expressions . 37

iii

5 Global and Local Variables 43
5.1 Variables Overview . 43

5.1.1 Scope . 43
5.1.2 Modifiability . 44
5.1.3 Typing . 44
5.1.4 Initialization . 45
5.1.5 Attributes . 45
5.1.6 Refinement . 45

6 Predefined Variables and Functions 46
6.1 Predefined Variables . 46

6.1.1 active.bro . 46
6.1.2 alert.bro . 46
6.1.3 anon.bro . 46
6.1.4 backdoor.bro . 46
6.1.5 bro.init . 50
6.1.6 code-red.bro . 52
6.1.7 conn.bro . 53
6.1.8 demux.bro . 53
6.1.9 dns.bro . 53
6.1.10 dns-mapping.bro . 54
6.1.11 finger.bro . 54
6.1.12 ftp.bro . 55
6.1.13 hot.bro . 56
6.1.14 hot-ids.bro . 58
6.1.15 http.bro. 58
6.1.16 http-abstract.bro . 59
6.1.17 http-request.bro . 59
6.1.18 icmp.bro . 59
6.1.19 ident.bro . 59
6.1.20 interconn.bro . 60
6.1.21 login.bro . 62
6.1.22 mime.bro . 64
6.1.23 ntp.bro . 64
6.1.24 port-names.bro . 64
6.1.25 portmapper.bro. 65
6.1.26 rules.bro . 66
6.1.27 scan.bro . 66
6.1.28 site.bro . 69
6.1.29 smtp.bro . 69
6.1.30 smtp-relay.bro . 71
6.1.31 software.bro . 71
6.1.32 ssh.bro . 71
6.1.33 stepping.bro . 71
6.1.34 tftp.bro . 73
6.1.35 udp.bro . 73
6.1.36 weird.bro . 73
6.1.37 worm.bro . 74

iv

6.1.38 Uncategorized . 74
6.2 Predefined Functions . 75

6.2.1 Run-time errors for non-existing connections 82
6.2.2 Run-time errors for strings with NULs. 82
6.2.3 Functions for manipulating strings . 83
6.2.4 Functions for manipulating time . 83

7 Analyzers and Events . 84
7.1 Activating an Analyzer . 84

7.1.1 Loading Analyzers . 84
7.1.2 Filtering . 84

7.2 General Processing Events . 86
7.3 Generic Connection Analysis . 87

7.3.1 The connection record . 88
7.3.2 Definitions of connections . 90
7.3.3 Generic TCP connection events . 90
7.3.4 The tcp analyzer . 92
7.3.5 The udp analyzer . 92
7.3.6 Connection summaries . 93
7.3.7 Connection functions . 95

7.4 Site-specific information . 97
7.4.1 Site variables . 97
7.4.2 Site-specific functions . 98

7.5 The hot Analyzer . 98
7.5.1 hot variables . 99
7.5.2 hot functions . 102

7.6 The scan Analyzer . 104
7.6.1 scan variables . 104
7.6.2 scan functions . 106
7.6.3 scan event handlers . 106

7.7 The port-name Module . 107
7.8 The mt Module . 107
7.9 The log Module . 107
7.10 The active Module . 108
7.11 The demux Module . 108
7.12 The dns Module . 109

7.12.1 The dns_mapping record . 110
7.12.2 dns variables . 110
7.12.3 dns event handlers . 110

7.13 The finger Analyzer . 111
7.13.1 finger variables . 111
7.13.2 finger event handlers . 112

7.14 The frag Module . 112
7.15 The hot-ids Module . 113
7.16 The ftp Analyzer . 114

7.16.1 The ftp_session_info record . 114
7.16.2 ftp variables . 115
7.16.3 ftp functions . 117

v

7.16.4 ftp event handlers . 117
7.17 The http Analyzer . 118

7.17.1 http variables . 119
7.17.2 http event handlers . 120

7.18 The ident Analyzer . 120
7.18.1 ident variables . 121
7.18.2 ident event handlers . 121

7.19 The login Analyzer . 121
7.19.1 login analyzer confusion . 123
7.19.2 login variables . 125
7.19.3 login functions . 130
7.19.4 login event handlers . 131

7.20 The portmapper Analyzer . 136
7.20.1 portmapper variables . 137
7.20.2 portmapper functions . 138
7.20.3 portmapper event handlers . 140

7.21 The analy Analyzer . 142
7.22 The signature Module . 143
7.23 The SSL Analyzer . 144

7.23.1 The x509 record . 145
7.23.2 The ssl_connection_info record . 145
7.23.3 SSL variables . 146
7.23.4 SSL event handlers . 147

7.24 The weird Module . 149
7.24.1 Actions for “weird” events . 149
7.24.2 weird variables . 150
7.24.3 weird functions . 151
7.24.4 Events handled by conn_weird . 152
7.24.5 Events handled by conn_weird_addl 156
7.24.6 Events handled by flow_weird . 156
7.24.7 Events handled by net_weird . 157
7.24.8 Events generated by the standard scripts 158
7.24.9 Additional handlers for “weird” events 158

7.25 The icmp Analyzer . 159
7.26 The stepping Analyzer . 159
7.27 The ssh-stepping Module . 159
7.28 The backdoor Analyzer . 159
7.29 The interconn Analyzer . 159

8 Signatures. 160
8.1 Overview . 160
8.2 Signature language . 160

8.2.1 Conditions . 160
8.2.1.1 Header conditions . 160
8.2.1.2 Content conditions . 161
8.2.1.3 Dependency conditions . 162
8.2.1.4 Context conditions . 162

8.2.2 Actions . 163

vi

8.3 snort2bro . 163

9 Interactive Debugger . 164
9.1 Debugger Overview. 164
9.2 A Sample Session . 164
9.3 Usage . 165
9.4 Notes and Limitations . 166
9.5 Reference . 166

10 Missing Documentation 171
10.1 The use of prefixes . 171
10.2 The tcpdump save file that Bro writes . 171
10.3 The bro.init initialization file . 171
10.4 Assignment operators such as += . 171
10.5 The notion of redefinition/refinement . 171
10.6 The logging model . 171
10.7 Timer management . 171
10.8 SYN-FIN filtering . 171
10.9 Split routing . 171
10.10 Scan dropping . 171
10.11 Operator precedence . 171
10.12 Partial connections . 171
10.13 Packet drops . 171
10.14 The load directive . 171
10.15 Global statements . 171
10.16 Inserting tables into tables . 171
10.17 Demultiplexing . 171
10.18 Bro init file . 172
10.19 Hostnames vs. addresses . 172
10.20 The hot-report script . 172
10.21 Use of libpcap/BPF . 172
10.22 The problem of evasion . 172
10.23 Backscatter . 172
10.24 Playing back traces. 172
10.25 Discarders . 172
10.26 Differences between this release and the previous one 172
10.27 Alert cascade . 172
10.28 The need for subtyping . 172
10.29 The need for CIDR masks . 172
10.30 The wish list. 172
10.31 Known bugs . 172

11 References . 173

Index . 175

1

Figures and Tables

Figure 7.1: Example of SSL log file with a single SSL session. 147
Figure 8.1: Definition of the signature_state record. 162

Table 6.1: Different types of directions for set_contents file . 80
Table 7.1: TCP and UDP connection states, as stored in an endpoint record 91
Table 7.2: Summaries of connection states, as reported in red files 95
Table 7.3: Different connection states to use when calling check hot 103
Table 7.4: Different types of confusion that login analyzer can report. 124
Table 7.5: Types of calls to the RPC portmapper service . 136
Table 7.6: Types of RPC status codes . 140
Table 7.7: endpoint_stats fields for summarizing connection endpoint statistics, all of

type count . 143
Table 7.8: Possible actions to take for signatures matches . 144
Table 7.9: Different types of possible actions to take for ”weird” events 150
Table 9.1: Debugger Commands . 167

Chapter 1: Introduction 2

1 Introduction

Bro is an intrusion detection system that works by passively watching traffic seen on a
network link. It is built around an event engine that pieces network packets into events
that reflect different types of activity. Some events are quite low-level, such as the monitor
seeing a connection attempt; some are specific to a particular network protocol, such as
an FTP request or reply; and some reflect fairly high-level notions, such as a user having
successfully authenticated during a login session.

Bro runs the events produced by the event engine through a policy script, which you
(the Bro administrator) supply, though in general you will do so by using large portions of
the scripts (“analyzers”; see below) that come with the Bro distribution.

You write policy scripts in “Bro”, a specialized language geared towards network analysis
in general and security analysis in particular. Bro scripts are made up of event handlers that
specify what to do whenever a given event occurs. Event handlers can maintain and update
global state information, write arbitrary information to disk files, generate new events, call
functions (either user-defined or predefined), generate alerts that produce syslog messages,
and invoke arbitrary shell commands. These latter might terminate a running connection
or talk to your border router to install an ACL prohibiting traffic from a particular host,
for example.

The Bro language is strongly typed and includes a bunch of types designed to aid ana-
lyzing network traffic. It also supports implicit typing, meaning that often you don’t need
to explicitly indicate a variable’s type because Bro can figure it out from context. This
feature makes the strong typing a bit less of a pain, while retaining its bug-finding benefits.

For high performance, Bro relies on use of an efficient packet filter to capture only a
(hopefully small) subset of the traffic that transits the link it monitors. Related to this, Bro
comes with a set of analyzers, that is, scripts for analyzing different protocols and different
types of activity. In general you can pick and choose among these for which types of analysis
you want to enable, and Bro will only capture traffic relating to the analyzers you choose.
Thus, you can control how much work Bro has to do by the analyzers you designate, a
potentially major consideration if the monitored link has a high volume of traffic.

Experience has shown that the policy scripts often require tailoring to each environment
in which they’re used; but if the tailoring is done by editing the analyzers supplied with the
Bro distribution, you wind up with multiple copies of the analyzers, all slightly different,
such that when you want to make a general change to all of them, it takes careful (and
tedious) editing to correctly apply the change to all of the copies.

Consequently, Bro emphasizes the use of tables and sets of values as ways to codify
policy particulars such as which hosts should generate alerts if seen engaged in various
types of connections, which usernames are sensitive and should trigger alerts when used,
and so on. The various analyzers are written such that you can (often) customize them by
simply changing variables associated with the analyzer. Furthermore, Bro supports a notion
of refining the initialization of a variable, so that, in a separate file from the one defining
an analyzer, you can either (i) redefine the variable’s initial value, (ii) add new elements
to a given table, set or pattern, or (iii) remove elements from a given table or set. In a
nutshell, refinement allows you to specify particular policies in terms of their differences
from existing policies, rather than in their entirety.

Chapter 1: Introduction 3

You can find an overview of Bro in the paper “Bro: A System for Detecting Network
Intruders in Real-Time,” Proceedings of the 1998 USENIX Security Symposium Pa98 and
a revised version in Computer Networks Pa99 A copy of the latter is included in the Bro
distribution.

Using this manual:

This manual is intended to provide full documentation for users of Bro, both those who
wish to write Bro scripts to use Bro’s existing analyzers, and those who wish to implement
event engine support for new Bro analyzers. The current version of the manual is incomplete;
in particular, it does not discuss the internals of the event engines, and a number of other
topics have only placeholders.

The manual is organized not as a tutorial, but rather closer to a reference manual. In
particular, the intent is for the index to be highly comprehensive, and to serve as one
of the main tools to help you navigate through Bro’s numerous features and capabilities.
Accordingly, the index contains many “redundant” entries, that is, the same information
indexed in multiple ways, to try to make it particularly easy to look up information. For
example, you’ll find a list of all of the predefined functions under “predefined functions”,
and also under “functions”. There are similar entries for “events” and “variables”.

The manual also includes Note:’s and Deficiency:’s that emphasize points that may
be subtle or counter-intuitive, or that reflect bugs of some form. The general delineation
between the two is that Note:’s discuss facets of Bro not likely to change, while Deficiency:’s
will (should) eventually get fixed.

I’m very interested in feedback on whether the manual in general and the index in
particular is effective, what should be added or removed from it to improve it, any errors
found in the index or (of course) elsewhere in the manual, and what topics you would give
the highest priority for the next revision of the manual. In addition, any contributions to the
manual will be highly welcome! You’ll find the source for the manual in doc/manual-src/.

The current version of the manual is organized as follows. We begin with an overview of
how to get started using Bro: building and installing it, running it interactively and on live
and prerecorded network traffic, and the helper utilities (scripts and programs) included in
the distribution (Chapter N).

Chapter N then discusses the different types, values, and constants that Bro supports.
The intent is to provide you with some of the flavor of the language. In addition, later
chapters use these concepts to explain things like the types associated with the arguments
passed to different event handlers.

Chapter N lists the different variables and functions that Bro predefines. The variables
generally reflect particular values that control the behavior of the event engine or reflect its
status, and the functions are for the most part utilities to aid in the writing of Bro scripts.

Chapter N discusses the different analyzers that Bro provides. It is far and away the
longest chapter, since there are a good number of analyzers, and some of them are quite
rich in their analysis.

Chapter N describes how to use Bro’s signature engine. The signature engine provides a
general mechanism for searching for regular expressions in packet payloads or reassembled
TCP byte streams. Successful matches can then be fed as events into your policy script
for further analysis, including the opportunity to assess the match in terms of surrounding

insert URL
insert URL

Chapter 1: Introduction 4

context, which can greatly reduce the problem of “false positives” from which signature-
matching can suffer. The chapter also discusses how to incorporate rules from the popular
Snort intrusion detection system.

Chapter N gives an overview of Bro’s interactive debugger. The debugger allows you
to breakpoint your policy script and inspect and change the values of script variables.
The chapter also describes the generation of traces of all of the events generated during
execution.

Finally, Chapter N briefly lists different aspects of Bro that have not yet been docu-
mented (in addition to the event engine and the Bro language itself).
Acknowledgments:

Major components of Bro’s functionality were contributed by Ruoming Pang, Umesh
Shankar, Robin Sommer, and Chema Gonzalez. Robin also wrote Chapter N of this man-
ual; Umesh wrote Chapter N; and Michael Kuhn and Benedikt Ostermaier contributed the
SSL analyzer (with additional development by Scott Campbell) and the associated docu-
mentation.

Many thanks, too, to Craig Leres, Craig Lant, Jim Mellander, Anne Hutton, David
Johnston, Mark Handley, and Partha Banerjee for their contributions and operational feed-
back.

Finally, a number of people were instrumental to supporting Bro’s development: Jim
Rothfuss, Mark Rosenberg, Stu Loken, Van Jacobson, Dave Stevens, and Jeff Mogul. Again,
many thanks!

Chapter 2: Getting Started 5

2 Getting Started

This chapter gives an overview of how to get started with operating Bro: (i) compiling it,
(ii) running it interactively, on live network traffic, and on recorded traces, (iii) how Bro
locates the policy files it should evaluate and how to modify them, (iv) the arguments you
can give it to control its operation, and (v) some helper utilities also distributed with Bro
that you’ll often find handy.

2.1 Running Bro

This section discusses how to build and install Bro, running it interactively (mostly useful
for building up familiarity with the policy language, not for traffic analysis), running it on
live and recorded network traffic, modifying Bro policy scripts, and the different run-time
flags.

2.1.1 Building and installing Bro

2.1.1.1 Supported platforms

Bro builds on a number of types of Unix: FreeBSD, Solaris, Linux, though not all versions.
It does not build under non-Unix operating systems such as Windows NT.

2.1.1.2 The Bro source code distribution

You can get the latest public release of Bro from the Bro web page,
http://www.bro-ids.org/. Bro is distributed as a gzip’d Unix tar archive,
which you can unpack using:

gzcat +tar-file | tar xf -

or, on some Unix systems:

+tar zxf +tar-file

This creates a subdirectory +bro-+XXX+-+version , where XXX is a tag such as pub
for public releases and priv for private releases, and version reflects a version and possibly
a subversion, such as 0.8a20 for version 0.8 and subversion a20.

To build Bro, change to the Bro directory and enter:

./configure
make

Fixme: Need to discuss configuration options here.

This will compile all of the Bro sources, including a version of the BIND DNS library,
version 8, which Bro uses for its non-blocking DNS lookups.

Note: For Linux systems, you may need to use the header files in the linux-include/
subdirectory included in the Bro distribution to successfully compile Bro.

2.1.1.3 Installing Bro

You install Bro by issuing:

make install

http://www.bro-ids.org/

Chapter 2: Getting Started 6

2.1.1.4 Tuning BPF

Bro is written using libpcap, the portable packet-capture library available from
ftp://ftp.ee.lbl.gov/libpcap.tar.Z. While libpcap knows how to use a wide range of
Unix packet filters, it far and away performs most efficiently used in conjunction with the
Berkeley Packet Filter (BPF) and with BPF descendants (such as the Digital Unix packet
filter). Althought BPF is available from ftp://ftp.ee.lbl.gov/bpf.tar.Z, installing it
involves modifying your kernel, and perhaps requires significant porting work. However, it
comes as part of several operating systems, such as FreeBSD, NetBSD, and OpenBSD.

For BPF systems, you should be aware of the follwoing tuning and configuration issues:

‘BPF kernel support’
You need to make sure that kernel support for BPF is enabled. In addition,
some systems default to configuring kernel support for only one BPF device.
This often proves to be a headache because it means you cannot run more than
one Bro at a time, nor can you run it at the same time as

‘/dev/bpf devices’
Related to the previous item, on BPF systems access to the packet filter is via
special /dev/bpf devices, such as /dev/bpf0. Just as you need to make sure that
the kernel’s configuration supports multiple BPF devices, so to must you make
sure that an equal number of device files reside in /dev/.

‘packet filter permissions’
On systems for which access to the packet filter is via the file system, you should
consider whether you want to only allow root access, or instead create a Unix
group for which you enable read access to the device file(s). The latter allows
you to run Bro as a user other than root, which is strongly recommended !

‘large BPF buffers’
While running with BPF is often necessary for high performance, it’s not nec-
essarily sufficient. By default, BPF programs use very modest kernel buffers
for storing packets, which leads to high context switch overhead as the kernel
very often has to deliver packets to the user-level Bro process. Minimizing the
overhead requires increasing the buffer sizes. This can make a large difference!

Under FreeBSD, the configuration variable to increase is debug.bpf_bufsize,
which you can set via sysctl. We recommend creating a script run at boot-up
time that increases it from its small default value to something on the order
of 100 KB–2 MB, depending on how fast (heavily loaded) is the link being
monitored, and how much physical memory the monitor machine has at its
disposal.

libpcap buffer size patch: Important note: some versions of have internal code
that limits the maximum buffer size to 32 KB. For these systems, you should
apply the patch included in the Bro distribution in the file libpcap.patch.

Finally, once you have increased the buffer sizes, you should check that running
Bro does indeed consume the amount of kernel memory you expect. You can
do this under FreeBSD using vmstat -m and searching in the output for the
summary of BPF memory. You should find that the MemUse statistic goes

Chapter 2: Getting Started 7

up by twice the buffer size for every concurrent Bro or tcpdump you run.1

The reason the increase is by twice the buffer size is because Bro uses double-
buffering to avoid dropping packets when the buffer fills up.

2.1.2 Using Bro interactively

Once you’ve built Bro, you can run it interactively to try out simple facets of the policy
language. Note that in this mode, Bro is not reading network traffic, so you cannot do any
traffic analysis; this mode is simply to try out Bro language features.

You run Bro interactively by simply executing “bro” without any arguments. It then
reads from stdin and writes to stdout.

Try typing the following to it:

print "hello, world";
^D (i.e., end of file)

(The end-of-file is critical to remember. It’s also a bit annoying for interactive evaluation,
but reflects the fact that Bro is not actually meant for interactive use, it simply works as a
side-effect of Bro’s structure.)

Bro will respond by printing:

hello, world

to stdout and exiting.

You can further declare variables and print expressions, for example:

global a = telnet;
print a, a > ftp;
print www.microsoft.com;

will print

23/tcp, T
207.46.230.229, 207.46.230.219, 207.46.230.218

(FIXME: this example needs to be updated. Format has changed.)

where 23/tcp reflects the fact that telnet is a predefined variable whose value is TCP
port 23, which is larger than TCP port 21 (i.e., ftp); and the DNS name www.microsoft.com
currently returns the above three addresses.

You can also define functions:

function top18bits(a: addr): addr
{
return mask_addr(a, 18);
}

print top18bits(128.3.211.7);

prints

128.3.192.0

and even event handlers:

1 Providing that these programs have been recompiled with the corrected libpcap noted above.

Chapter 2: Getting Started 8

event bro_done()
{
print "all done!";
}

which prints “all done!” when Bro exits.

2.1.3 Specifying policy scripts

Usually, rather than running Bro interactively you want it to execute a policy script or a
set of policy scripts. You do so by specifying the names of the scripts as command-line
arguments, such as:

bro ~/my-policy.bro ~/my-additional-policy.bro

Bro provides several mechanisms for simplifying how you specify which policies to run.
First, if a policy file doesn’t exist then it will try again using .bro as a suffix, so the

above could be specified as:
bro ~/my-policy ~/my-additional-policy

Second, Bro consults the colon-separated search path to locate policy scripts. If your
home directory was listed in $BROPATH, then you could have invoked it above using:

bro my-policy my-additional-policy

Note: If you define $BROPATH, you must include bro-dir/policy, where bro-dir is where
you have built or installed Bro, because it has to be able to locate bro-dir/policy/bro.init
to initialize itself at run-time.

Third, the @load directive can be used in a policy script to indicate the Bro should at
that point process another policy script (like C’s include directive; see). So you could have
in my-policy :

@load my-additional-policy

and then just invoke Bro using:
bro my-policy

providing you always want to load my-additional-policy whenever you load my-policy.
Note that the predefined Bro module mt loads almost all of the other standard Bro

analyzers, so you can pull them in with simply:
@load mt

or by invoking Bro using “bro mt my-policy”.

2.1.4 Running Bro on network traffic

There are two ways to run Bro on network traffic: on traffic captured live by the network
interface(s), and on traffic previously recorded using the -w flag of tcpdump or Bro itself.

2.1.4.1 Live traffic

Bro reads live traffic from the local network interface whenever you specify the -i flag.
As mentioned below, you can specify multiple instances to read from multiple interfaces
simultaneously, however the interfaces must all be of the same link type (e.g., you can’t mix
reading from a Fast Ethernet with reading from an FDDI link, though you can mix a 10
Mbps Ethernet interface with a 100 Mbps Ethernet).

Chapter 2: Getting Started 9

In addition, Bro will read live traffic from the interface(s) listed in the interfaces
variable, unless you specify the -r flag (and do not specify -i). So, for example, if your
policy script contains:

const interfaces += "sk0";
const interfaces += "sk1";

then Bro will read from the sk0 and sk1 interfaces, and you don’t need to specify -i.

2.1.4.2 Traffic traces

To run on recorded traffic, you use the -r flag to indicate the trace file Bro should read. As
with -i, you can use the flag multiple times to read from multiple files; Bro will merge the
packets from the files into a single packet stream based on their timestamps.

The Bro distribution includes an example trace that you can try out, example.ftp-
attack.trace. If you invoke Bro using:

setenv BRO_ID example
bro -r example.ftp-attack.trace mt

you’ll see that it generates a connection summary to stdout, a summary of the FTP
sessions to ftp.example, a copy of what would have been real-time alerts had Bro been
running on live traffic to log.example, and a summary of unusual traffic anomalies (none
in this trace) to weird.example.

2.1.5 Modifying Bro policy

One way to alter the policy Bro executes is of course to directly edit the scripts. When this
can be avoided, however, that is preferred, and Bro provides a pair of related mechanisms
to help you specify refinements to existing policies in separate files.

The first such mechanism is that you can define multiple handlers for a given event. So,
for example, even though the standard ftp analyzer (bro-dir/policy/ftp.bro) defines a
handler for ftp.request, you can define another handler if you wish in your own policy
script, even if that policy script loads (perhaps indirectly, via the mt module) the ftp
analyzer. When the event engine generates an ftp request event, both handlers will be
invoked.

Deficiency: Presently, you do not have control over the order in which they are invoked;
you also cannot completely override one handler with another, preventing the first from
being invoked.

Second, the standard policy scripts are often written in terms of redefinable variables.
For example, ftp.bro contains a variable ftp_guest_ids that defines a list of usernames
the analyzer will consider to reflect guest accounts:

const ftp_guest_ids = { "anonymous", "ftp", "guest", } &redef;

While “const” marks this variables as constant at run-time, the attribute “&redef”
specifies that its value can be redefined.

For example, in your own script you could have:

redef ftp_guest_ids = { "anonymous", "guest", "visitor", "student" };

instead. (Note the use of “redef” rather than “const”, to indicate that you realize you
are redefining an existing variable.)

Chapter 2: Getting Started 10

In addition, for most types of variables you can specify incremental changes to the
variable, either new elements to add or old ones to subtract. For example, you could
instead express the above as:

redef ftp_guest_ids += { "visitor", "student" };
redef ftp_guest_ids -= "ftp";

The potential advantage of incremental refinements such as these are that if any other
changes are made to ftp.bro’s original definition, your script will automatically inherit them,
rather than replacing them if you used the first definition above (which explicitly lists all
four names to include in the variable). Sometimes, however, you don’t want this form of
inheriting later changes; you need to decide on a case-by-case basis, though our experience
is that generally the incremental approach works best.

Finally, the use of prefixes provides a way to specify a whole set of policy scripts to
load in a particular context. For example, if you set $BRO_PREFIXES to “dialup”, then a
load of ftp.bro will also load dialup.ftp.bro automatically (if it exists). See Section 2.1.6.2
[Run-time environment], page 12 for further discussion.

2.1.6 Bro flags and run-time environment

2.1.6.1 Flags

When invoking Bro, you can control its behavior using the following flags:

‘-f filter’
Use filter as the tcpdump filter for capturing packets, rather than the combina-
tion of and restrict_filter, or the default of “tcp or udp” .

‘-h’ Generate a help message summarizing Bro’s options and environment variables,
and exit.

‘-i interface’
Add interface to the list of interfaces from which Bro should read network traffic
Section 2.1.4.1 [Live traffic], page 8. You can use this flag multiple times to
direct Bro to read from multiple interfaces. You can also, or in addition, use
refinements of the variable to specify interfaces.

Note that if no interfaces are specified, then Bro will not read any network
traffic. It does not have a notion of a “default” interface from which to read.

‘-p prefix’
Add prefix to the list of prefixes searched by Bro when loading a script. You
can also, or in addition, use prefix to specify search prefixes. See XXX for
discussion.

‘-r readfile’
Add readfile to the list of tcpdump save files that Bro should read. You can
use this flag multiple times to direct Bro to read from multiple save files; it
will merge the packets read from the different files based on their timestamps.
Note that if the save files contain only packet headers and not contents, then
of course Bro’s analysis of them will be limited.

Chapter 2: Getting Started 11

Note that use of -r is mutually exclusive with use of -i. However, you can use
-r when running scripts that refine interfaces, in which case the -r option
takes precedence and Bro performs off-line analysis.

‘-s signaturefile’
Add signaturefile to the list of files containing signatures to match against the
network traffic. See XXX for more information about signatures.

‘-w writefile’
Write a tcpdump save file to the file writefile. Bro will record all of the packets it
captures, including their contents, except as controlled by calls to set_record_
packets.
Note: One exception is that unless you are analyzing HTTP events (for ex-
ample, by loading the refhttp analyzer), Bro does not record the contents of
HTTP SYN/FIN/RST packets to the trace file. The reason for this is that
HTTP FIN packets often contain a large amount of data, which is not of any
interest if you are not using HTTP analysis, and due to the very high volume
of HTTP traffic at many sites, removing this data can significantly reduce the
size of the save file. Deficiency: Clearly, this should not be hardwired into Bro
but under user control.
Save files written using -w are of course readable using -r. Accordingly, you
will generally want to use -w when running Bro on live network traffic so you
can rerun it off-line later to understand any problems that arise, and also to
experiment with the effects of changes to the policy scripts.
You can also combine -r with -w to both read a save file(s) and write another.
This is of interest when using multiple instances of -r, as it provides a way to
merge tcpdump save files.

‘-v’ Print the version of Bro and exit.

‘-F’ Instructs Bro that it must resolve all hostnames out of its private DNS cache
(See XXX). If the script refers to a hostname not in the cache, then Bro exits
with a fatal error.
The point behind this option is to ensure that Bro starts quickly, rather than
possibly stalling for an indeterminant amount of time resolving a hostname.
Fast startup simplifies checkpointing a running Bro—you can start up a new
Bro and then killing off the old one shortly after. You’d like this to occur in a
manner such that there’s no period during which neither Bro is watching the
network (the older because you killed it off too early, the newer because it’s
stuck resolving hostnames).

‘-O’ Turns on Bro’s optimizer for improving its internal representation of the policy
script. Note: Currently, the amount of improvement is modest, and there’s (as
always) a risk of an optimizer bug introducing errors into the execution of the
script, so the optimizer is not enabled by default.

‘-P’ Instructs Bro to prime its private DNS cache (See XXX). It does so by parsing
the policy scripts, but not executing them. Bro looks up each hostname’s
address(es) and records them in the private cache. The idea is that once bro

Chapter 2: Getting Started 12

-P finishes, you can then use bro -F to start up Bro quickly because it will read
all the information it needs from the cache.

‘-W’ Instructs Bro to activate its internal watchdog. The watchdog provides self-
monitoring to enable Bro to detect if its processing is wedged.
Bro only activates the watchdog if it is reading live network traffic. The watch-
dog consists of a periodic timer that fires every WATCHDOG_INTERVAL seconds.
(Deficiency:clearly this should be a user-definable value.) At that point, the
watchdog checks to see whether Bro is still working on the same packet as it
was the last time the watchdog expired. If so, then the watchdog logs this fact
along with some information regarding when Bro began processing the current
packet and how many events it processed after handling the packet. Finally, it
prints the packet drop information for the different interfaces Bro was reading
from, and aborts execution.

2.1.6.2 Run-time environment

Bro is also sensitive to the following environment variables:

‘$BROPATH’
A colon-separated list of directories that Bro searches whenever you load a
policy file. It loads the first instance it finds (though see $BRO PREFIXES for
how a single load can lead to Bro loading multiple files).
Default: if you don’t set this variable, then Bro uses the path

.:policy:policy/local:/usr/local/lib/bro

That is, the current directory, any policy/ and policy/local/ subdirectories, and
/usr/local/lib/bro/.

‘$BRO_PREFIXES’
A colon-separate lists of prefixes that Bro should apply to each name in a @load
directive. For a given prefix and load-name, Bro constructs the filename:

prefix.load-name.bro
(where it doesn’t add .bro if load-name already ends in .bro). It then searches
for the filename using $BROPATH and loads it if its found. Furthermore, it
repeats this process for all of the other prefixes (left-to-right), and loads each
file it finds for the different prefixes. Note: Bro also first attempts to load the
filename without any prefix at all. If this load fails, then Bro exits with an error
complaining that it can’t open the given @load file.
For example, if you set $BRO PREFIXES to:

mysite:mysite.wan

and then issue “@load ftp”, Bro will attempt to load each of the following
scripts in the following order:

ftp.bro
mysite.ftp.bro
mysite.wan.ftp.bro

Default: if you don’t specify a value for $BRO PREFIXES, it defaults to empty,
and for the example above Bro would only attempt to @load ftp.bro.

Chapter 2: Getting Started 13

2.2 Helper utilities

2.2.1 Scripts

Documentation missing.

2.2.2 The hf utility

The hf utility reads text on stdin and attempts to convert any “dotted quads” it sees to
hostnames. It is very convenient for running on Bro log files to generate human-readable
forms. See the manual page included with the distribution for details.

2.2.3 The cf utility

The cf utility reads Unix timestamps at the beginning of lines on stdin and converts them
to human-readable form. For example, for the input line:

972499885.784104 #26 131.243.70.68/1899 > 64.55.26.206/ftp start

it will generate:
Oct 25 11:51:25 #26 131.243.70.68/1899 > 64.55.26.206/ftp start

It takes two flags:

‘-l’ specifies the long human-readable form, which includes the year. For example,
on the above input, the output would instead be:

Oct 25 11:51:25 2000 #26 131.243.70.68/1899 > 64.55.26.206/ftp start

‘-s’ specifies strict checking to ensure that the number at the beginning of a line is
a plausible timestamp: it must have at least 9 digits, at most one decimal, and
must have a decimal if there are 10 or more digits.
Without -s, an input like:

131.243.70.68 > 64.55.26.206

generates the output:
Dec 31 16:02:11 > 64.55.26.206

which, needless to say, is not very helpful.
Deficiency: It seems clear that -s should be the default behavior.

Chapter 3: Values, Types, and Constants 14

3 Values, Types, and Constants

3.1 Values Overview

We begin with an overview of the types of values supported by Bro, giving a brief description
of each type and introducing the notions of type conversion and type inference. We discuss
each type in detail in

3.1.1 Bro Types

There are 18 (XXX check this) types of values in the Bro type system:
• bool for Booleans;
• count, int, and double types, collectively called numeric, for arithmetic and logical

operations, and comparisons;
• enum for enumerated types similar to those in C;
• string, character strings that can be used for comparisons and to index tables and

sets;
• pattern, regular expressions that can be used for pattern matching;
• time and interval, for absolute and relative times, collectively termed temporal ;
• port, a TCP or UDP port number;
• addr, an IP address;
• net, a network prefix;
• record, a collection of values (of possibly different types), each of which has a name;
• table, an associative array, indexed by tuples of scalars and yielding values of a par-

ticular type;
• set, a collection of tuples-of-scalars, for which a particular tuple’s membership can be

tested;
• file, a disk file to write or append to;
• function, a function that when called with a list of values (arguments) returns a value;
• event, an event handler that is invoked with a list of values (arguments) any time an

event occurs.

Every value in a Bro script has one of these types. For most types there are ways of
specifying constants representing values of the type. For example, 2.71828 is a constant
of type double, and 80/tcp is a constant of type port. The discussion of types in XXX
below includes a description of how to specify constants for the types.

Finally, even though Bro variables have static types, meaning that their type is fixed,
often their type is inferred from the value to which they are initially assigned when the
variable is declared. For example,

local a = "hi there";

fixes a’s type as string, and
local b = 6;

sets b’s type to count. See for further discussion.

Chapter 3: Values, Types, and Constants 15

3.1.2 Type Conversions

Some types will be automatically converted to other types as needed. For example, a count
value can always be used where a double value is expected. The following:

local a = 5;
local b = a * .2;

creates a local variable a of type count and assigns the double value 1.0 to b, which will
also be of type double. Automatic conversions are limited to converting between numeric
types. The rules for how types are converted are given below.

3.2 Booleans

The bool type reflects a value with one of two possible meanings: true or false.

3.2.1 Boolean Constants

There are two bool constants: T and F. They represent the values of “true" and “false",
respectively.

3.2.2 Logical Operators

Bro supports three logical operators: &&, ||, and ! are Boolean “and,” “or,” and “not,”
respectively. && and || are “short circuit” operators, as in C: they evaluate their right-hand
operand only if needed.

The && operator returns F if its first operand evaluates to false, otherwise it evaluates
its second operand and returns T if it evaluates to true. The || operator evaluates its first
operand and returns T if the operand evaluates to true. Otherwise it evaluates its second
operand, and returns T if it is true, F if false.

The unary ! operator returns the boolean negation of its argument. So, ! T yields F,
and ! F yields T.

The logical operators are left-associative. The ! operator has very high precedence, the
same as unary + and -; see The || operator has precedence just below &&, which in turn
is just below that of the comparison operators (see Section 3.3.4 [Comparison Operators],
page 16).

3.3 Numeric Types

int, count, and double types should be familiar to most programmers as integer, unsigned
integer, and double-precision floating-point types.

These types are referred to collectively as numeric. Numeric types can be used in
arithmetic operations (see below) as well as in comparisons (Section 3.3.4 [Comparison
Operators], page 16).

3.3.1 Numeric Constants

count constants are just strings of digits: 1234 and 0 are examples.
integer constants are strings of digits preceded by a + or - sign: -42 and +5 for example.

Because digit strings without a sign are of type count, occasionally you need to take care
when defining a variable if it really needs to be of type int rather than count. Because of
type inferencing , a definition like:

Chapter 3: Values, Types, and Constants 16

local size_difference = 0;

will result in size_difference having type count when int is what’s instead needed
(because, say, the size difference can be negative). This can be resolved either by using an
int constant in the initialization:

local size_difference = +0;

or explicitly indicating the type:

local size_difference: int = 0;

You write floating-point constants in the usual ways, a string of digits with perhaps
a decimal point and perhaps a scale-factor written in scientific notation. Optional + or -
signs may be given before the digits or before the scientific notation exponent. Examples are
-1234., -1234e0, 3.14159, and .003e-23. All floating-point constants are of type double.

3.3.2 Mixing Numeric Types

You can freely intermix numeric types in expressions. When intermixed, values are pro-
moted to the “highest" type in the expression. In general, this promotion follows a simple
hierarchy: double is highest, int comes next, and count is lowest. (Note that bool is not
a numeric type.)

3.3.3 Arithmetic Operators

For doing arithmetic, Bro supports + - * / and % . In general, binary operators evaluate
their operands after converting them to the higher type of the two and return a result of that
type. However, subtraction of two count values yields an int value. Division is integral if
its operands are count and/or int.

+ and - can also be used as unary operators. If applied to a count type, they yield an
int type.

% computes a modulus, defined in the same way as in the C language. It can only be
applied to count or int types, and yields count if both operands are count types, otherwise
int.

Binary + and - have the lowest precedence, *, /, and % have equal and next highest
precedence. The unary + and - operators have the same precedence as the ! operator
Section 3.2.2 [Logical Operators], page 15. See , for a table of the precedence of all Bro
operators.

All arithmetic operators associate from left-to-right.

3.3.4 Comparison Operators

Bro provides the usual comparison operators: == , != , < , <= , > , and >= . They each take
two operands, which they convert to the higher of the two types (see Section 3.3.2 [Mixing
Numeric Types], page 16). They return a bool corresponding to the comparison of the
operands. For example,

3 < 3.000001

yields true.

The comparison operators are all non-associative and have equal precedence, just below
that of the just above that of the See , for a general discussion of precedence.

Chapter 3: Values, Types, and Constants 17

3.4 Enumerations

Enumerations allow you to specify a set of related values that have no further structure,
similar to enum types in C. For example:

type color: enum { Red, White, Blue, };

defines the values Red, White, and Blue. A variable of type color holds one of these
values. Note that Red et al have global scope. You cannot define a variable or type with
those names. (Also note that, as usual, the comma after Blue is optional.)

The only operations allowed on enumerations are comparisons for equality. Unlike C
enuemrations, they do not have values or an ordering associated with them.

You can extend the set of values in an enumeration using redef enum identifier += {
name-list }:

redef enum color += { Black, Yellow };

3.5 Strings

The string type holds character-string values, used to represent and manipulate text.

3.5.1 String Constants

You create string constants by enclosing text within double (") quotes. A backslash char-
acter (\) introduces an escape sequence. The following ANSI C escape sequences are rec-
ognized: FIXME the 8-bit ASCII character with code hex-digits. Bro string constants
currently cannot be continued across multiple lines by escaping newlines in the input. This
may change in the future. Any other character following a \ is passed along literally.

Unlike in C, strings are represented internally as a count and a vector of bytes, rather
than a NUL-terminated series of bytes. This difference is important because NULs can
easily be introduced into strings derived from network traffic, either by the nature of the
application, inadvertently, or maliciously by an attacker attempting to subvert the monitor.
An example of the latter is sending the following to an FTP server:

USER nice\0USER root

where “\0” represents a NUL. Depending on how it is written, the FTP application
receiving this text might well interpret it as two separate commands, “USER nice” followed
by “USER root”. But if the monitoring program uses NUL-terminated strings, then it will
effectively see only “USER nice” and have no opportunity to detect the subversive action.

Note that Bro string constants are automatically NUL-terminated.
Note: While Bro itself allows NULs in strings, their presence in arguments to many Bro

functions results in a run-time error, as often their presence (or, conversely, lack of a NUL
terminator) indicates some sort of problem (particularly for arguments that will be passed
to C functions). See XXX for discussion.

3.5.2 String Operators

Currently the only string operators provided are the comparison operators discussed in
Section 3.3.4 [Comparison Operators], page 16 and pattern-matching as discussed in Sec-
tion 3.6.2 [Pattern Operators], page 18. These operators perform character by character
comparisons based on the native character set, usually ASCII.

Some functions for manipulating strings are also available. See .

Chapter 3: Values, Types, and Constants 18

3.6 Patterns

The pattern type holds regular-expression patterns, which can be used for fast text search-
ing operations.

3.6.1 Pattern Constants

You create pattern constants by enclosing text within forward slashes (/). The syntax is
the same as for the flex version of the lex utility. For example,

/foo|bar/

specifies a pattern that matches either the text “foo” or the text “bar”;

/[a-zA-Z0-9]+/

matches one or more letters or digits, as will

/[[:alpha:][:digit:]]+/

or

/[[:alnum:]]+/

and the pattern

/^rewt.*login/

matches any string with the text “rewt” at the beginning of a line followed somewhere
later in the line by the text “login”.

You can create disjunctions (patterns the match any of a number of alternatives) both
using the “{|}” regular expression operator directly, as in the first example above, or by
using it to join multiple patterns. So the first example above could instead be written:

/foo/ | /bar/

This form is convenient when constructing large disjunctions because it’s easier to see
what’s going on.

Note that the speed of the regular expression matching does not depend on the complex-
ity or size of the patterns, so you should feel free to make full use of the expressive power
they afford.

You can assign pattern values to variables, hold them in tables, and so on. So for
example you could have:

global address_filters: table[addr] of pattern = {
[128.3.4.4] = /failed login/ | /access denied/,
[128.3.5.1] = /access timeout/

};

and then could test, for example:

if (address_filters[cidorig_h] in msg)
skip_the_activity();

Note though that you cannot use create patterns dynamically. this form (or any other)
to create dynamic

3.6.2 Pattern Operators

There are two types of pattern-matching operators: exact matching and embedded matching.

Chapter 3: Values, Types, and Constants 19

3.6.2.1 Exact Pattern Matching

Exact matching tests for a string entirely matching a given pattern. You specify exact
matching by using the == equality relational with one pattern operand and one string
operand (order irrelevant). For example,

"foo" == /foo|bar/

yields true, while
/foo|bar/ == "foobar"

yields false. The != operator is the negation of the == operator, just as when comparing
strings or numerics.

Note that for exact matching, the ^ (anchor to beginning-of-line) and $ (anchor to end-
of-line) regular expression operators are redundant: since the match is exact, every pattern
is implicitly anchored to the beginning and end of the line.

3.6.2.2 Embedded Pattern Matching

Embedded matching tests whether a given pattern appears anywhere within a given string.
You specify embedded pattern matching using the in operator. It takes two operands, the
first (which must appear on the left-hand side) of type pattern, the second of type string.
For example,

/foo|bar/ in "foobar"

yields true, as does
/oob/ in "foobar"

but
/^oob/ in "foobar"

does not, since the text “oob” does not appear the beginning of the string “foobar”.
Note, though, that the $ regular expression operator (anchor to end-of-line) is not currently
supported, so:

/oob$/ in "foobar"

currently yields true. This is likely to change in the future.
Finally, the !in operator yields the negation of the in operator.

3.7 Temporal Types

Bro supports types representing absolute and relative times with the time and interval
types, respectively.

3.7.1 Temporal Constants

There is currently no way to specify an absolute time as a constant (though see the current_
time and network_time functions in XXX). You can specify interval constants, however,
by appending a time unit after a numeric constant. For example,

3.5 min

denotes 210 seconds. The different time units are usec, sec, min, hr, and day, represent-
ing microseconds, seconds, minutes, hours, and days, respectively. The whitespace between
the numeric constant and the unit is optional, and the letter “s” may be added to pluralize
the unit (this has no semantic effect). So the above example could also be written:

Chapter 3: Values, Types, and Constants 20

3.5mins

or

150 secs

3.7.2 Temporal Operators

You can apply arithmetic and relational operators to temporal values, as follows.

3.7.2.1 Temporal Negation

The unary - operator can be applied to an interval value to yield another interval value.
For example,

- 12 hr

represents “twelve hours in the past.”

3.7.2.2 Temporal Addition

Adding two interval values yields another interval value. For example,

5 sec + 2 min

yields 125 seconds. Adding a time value to an interval yields another time value.

3.7.2.3 Temporal Subtraction

Subtracting a time value from another time value yields an interval value, as does sub-
tracting an interval value from another interval, while subtracting an interval from a
time yields a time.

3.7.2.4 Temporal Multiplication

You can multiply an interval value by a numeric value to yield another interval value.
For example,

5 min * 6.5

yields 1,950 seconds. time values cannot be scaled by multiplication or division.

3.7.2.5 Temporal Division

You can also divide an interval value by a numeric value to yield another interval value.
For example,

5 min / 2

yields 150 seconds. Furthermore, you can divide one interval value by another to yield
a double. For example,

5 min / 30 sec

yields 10.

3.7.2.6 Temporal Relationals

You may compare two time values or two interval values for equality, and also for ordering,
where times or intervals further in the future are considered larger than times or intervals
nearer in the future, or in the past.

Chapter 3: Values, Types, and Constants 21

3.8 Port Type

The port type corresponds to a TCP or UDP port number. TCP and UDP ports are
distinct. Thus, a value of type port can hold either a TCP or a UDP port, but at any given
time it is holding exactly one of these.

3.8.1 Port Constants

There are two forms of port constants. The first consists of an unsigned integer followed
by either “/tcp” or “/udp.” So, for example, “80/tcp” corresponds to TCP port 80 (the
HTTP protocol used by the World Wide Web). The second form of constant is specified
using a predefined identifier, such as “http”, equivalent to “80/tcp.” These predefined
identifiers are simply const variables defined in the Bro initialization file (see XXX), such
as:

const http = 80/tcp;

3.8.2 Port Operators

The only operations that can be applied to port values are relationals. You may compare
them for equality, and also for ordering. For example,

20/tcp < telnet

yields true because telnet is a predefined constant set to 23/tcp.

UDP ports are considered larger than TCP ports, i.e., “0/udp” is larger than
“65535/tcp”.

3.9 Address Type

Another networking type provided by Bro is addr, corresponding to an IP address. The
only operations that can be performed on them are comparisons for equality or inequality
(also, a built-in function provides masking, as discussed below).

When configuring the Bro distribution, if you specify --enable-brov6

then Bro will be built to support both IPv4 and IPv6 addresses, and an addr can hold
either. Otherwise, addresses are restricted to IPv4.

3.9.1 Address Constants

Constants of type addr have the familiar “dotted quad” format, A_1.A_2.A_3.A_4, where
the A i all lie between 0 and 255. If you have configured for IPv6 support as discussed
above, then you can also use the colon-separated hexadecimal form described in RFC2373.

Often more useful are hostname constants. There is no Bro type corresponding to Inter-
net hostnames. Because hostnames can correspond to multiple IP addresses, you quickly
run into ambiguities if comparing one hostname with another. Bro does, however, support
hostnames as constants. Any series of two or more identifiers delimited by dots forms a
hostname constant, so, for example, “lbl.gov” and “www.microsoft.com” are both host-
name constants (the latter, as of this writing, corresponds to 5 distinct IP addresses). The
value of a hostname constant is a list of addr containing one or more elements. These
lists (as with the lists associated with certain port constants, discussed above) cannot be
used in Bro expressions; but they play a central role in initializing Bro tables and sets.

Chapter 3: Values, Types, and Constants 22

3.9.2 Address Operators

The only operations that can be applied to addr values are comparisons for equality or
inequality, using == and !=. However, you can also operate on addr values using to mask
off lower address bits, and to convert an addr to a net (see below).

3.10 Net Type

Related to the addr type is net. net values hold address prefixes. Historically, the IP
address space was divided into different classes of addresses, based on the uppermost com-
ponents of a given address: class A spanned the range 0.0.0.0 to 127.255.255.255; class B
from 128.0.0.0 to 191.255.255.255; class C from 192.0.0.0 to 223.255.255.255; class D from
224.0.0.0 to 239.255.255.255; and class E from 240.0.0.0 to 255.255.255.255. Addresses were
allocated to different networks out of either class A, B, or C, in blocks of 224, 216, and 28

addresses, respectively.

Accordingly, net values hold either an 8-bit class A prefix, a 16-bit class B prefix, a
24-bit class C prefix, or a 32-bit class D “prefix” (an entire address). Values for class E
prefixes are not defined (because no such addresses are currently allocated, and so shouldn’t
appear in other than clearly-bogus packets).

Today, address allocations come not from class A, B or C, but instead from CIDR
blocks (CIDR = Classless Inter-Domain Routing), which are prefixes between 1 and 32
bits long in the range 0.0.0.0 to 223.255.255.255. Deficiency: Bro should deal just with
CIDR prefixes, rather than old-style network prefixes. However, these are more difficult to
implement efficiently for table searching and the like; hence currently Bro only supports the
easier-to-implement old-style prefixes. Since these don’t match current allocation policies,
often they don’t really fit an address range you’ll want to describe. But for sites with older
allocations, they do, which gives them some basic utility.

In addition, Deficiency: IPv6 has no notion of old-style network prefixes, only CIDR
prefixes, so the lack of support of CIDR prefixes impairs use of Bro to analyze IPv6 traffic.

3.10.1 Net Constants

You express constants of type net in one of two forms, either:

N_1.N_2.

or

N_1.N_2.N_3

where the N i all lie between 0 and 255. The first of these corresponds to class B
prefixes (note the trailing “.” that’s required to distinguish the constant from a floating-
point number), and the second to class C prefixes. Deficiency: There’s currently no way to
specify a class A prefix.

3.10.2 Net Operators

The only operations that can be applied to net values are comparisons for equality or
inequality, using == and !=.

Chapter 3: Values, Types, and Constants 23

3.11 Records

A record is a collection of values. Each value has a name, referred to as one of the record’s
fields, and a type. The values do not need to have the same type, and there is no restriction
on the allowed types (i.e., each field can be any type).

3.11.1 Defining records

A definition of a record type has the following syntax:
record { field+ }

(that is, the keyword record followed by one-or-more field ’s enclosed in braces), where
a field has the syntax:

identifier : type field−attributes∗ ; identifier : type field−attributes∗ ,

Each field has a name given by the identifier (which can be the same as the identifier
of an existing variable or a field in another record). Field names must follow the same
syntax as that for Bro variable names (see XXX), namely they must begin with a letter or
an underscore (“_”) followed by zero or more letters, underscores, or digits. Bro reserved
words such as if or event cannot be used for field names. Field names are case-sensitive.

Each field holds a value of the given type. We discuss the optional Finally, you can use
either a semicolon or a comma to terminate the definition of a record field.

For example, the following record type:
type conn_id: record {

orig_h: addr; # Address of originating host.
orig_p: port; # Port used by originator.
resp_h: addr; # Address of responding host.
resp_p: port; # Port used by responder.

};

is used throughout Bro scripts to denote a connection identifier by specifying the con-
nections originating and responding addresses and ports. It has four fields: orig_h and
resp_h of type addr, and orig_p of resp_p of type port.

3.11.2 Record Constants

You can initialize values of type record using either assignment from another, already
existing record value; or element-by-element; or using a

In a Bro function or event handler, we could declare a local variable the conn_id type
given above:

local id: conn_id;

and then explicitly assign each of its fields:
id$orig_h = 207.46.138.11;
id$orig_p = 31337/tcp;
id$resp_h = 207.110.0.15;
id$resp_p = 22/tcp;

Deficiency: One danger with this initialization method is that if you forget to initialize
a field, and then later access it, you will crash Bro.

Or we could use:

Chapter 3: Values, Types, and Constants 24

id = [$orig_h = 207.46.138.11, $orig_p = 31337/tcp,
$resp_h = 207.110.0.15, $resp_p = 22/tcp];

This second form is no different from assigning a record value computed in some other
fashion, such as the value of another variable, a table element, or the value returned by a
function call. Such assignments must specify all of the fields in the target (i.e., in id in this
example), unless the missing field has the &optional or &default attribute.

3.11.3 Accessing Fields Using “$”

You access and assign record fields using the “$” (dollar-sign) operator. As indicated in the
example above, for the record id we can access its orig_h field using:

id$orig_h

which will yield the addr value 207.46.138.11.

3.11.4 Record Assignment

You can assign one record value to another using simple assignment:

local a: conn_id;
...
local b: conn_id;
...
b = a;

Doing so produces a shallow copy. That is, after the assignment, b refers to the same
record as does a, and an assignment to one of b’s fields will alter the field in a’s value (and
vice versa for an assignment to one of a’s fields). However, assigning again to b itself, or
assigning to a itself, will break the connection.

Deficiency: Bro lacks a mechanism for specifying a deep copy, in which no linkage is
connected between b and a. Consequently, you must be careful when assigning records to
ensure you account for the shallow-copy semantics.

You can also assign to a record another record that has fields with the same names and
types, even if they come in a different order. For example, if you have:

local b: conn_id;
local c: record {

resp_h: addr, orig_h: addr;
resp_p: port, orig_p: port;

};

then you can assign either b to c or vice versa.

You could not, however, make the assignment (in either direction) if you had:

local b: conn_id;
local c: record {

resp_h: addr, orig_h: addr;
resp_p: port, orig_p: port;
num_alerts: count;

};

because the field num_alerts would either be missing or excess.

Chapter 3: Values, Types, and Constants 25

However, when declaring a record you can associate attributes with the fields. The
relevant ones are &optional, which indicates that when assigning to the record you can
omit the field, and &default = expr, which indicates that if the field is missing, then a
reference to it returns the value of the expression expr. So if instead you had:

local b: conn_id;
local c: record {

resp_h: addr, orig_h: addr;
resp_p: port, orig_p: port;
num_alerts: count &optional;

};

then you could execute c = b even though num_alerts is missing from b. You still could
not execute b = c, though, since in that direction, num alerts is an extra field (regardless of
whether it has been assigned to or not — the error is a type-checking error, not a run-time
error).

The same holds for:
local b: conn_id;
local c: record {

resp_h: addr, orig_h: addr;
resp_p: port, orig_p: port;
num_alerts: count &default = 0;

};

I.e., you could execute c = b but not b = c. The only difference between this example
and the previous one is that for the previous one, access to c$num_alerts without having
first assigned to it results in a run-time error, while in the second, it yields 0.

You can test for whether a record field exists using the ?$ operator.
Finally, all of the rules for assigning records also apply when passing a record value as

an argument in a function call or an event handler invocation.

3.12 Tables

table’s provide associative arrays: mappings from one set of values to another. The values
being mapped are termed the index (or indices, if they come in groups of more than one)
and the results of the mapping the yield.

Tables are quite powerful, and indexing them is very efficient, boiling down to a single
hash table lookup. So you should take advantage of them whenever appropriate.

3.12.1 Declaring Tables

You declare tables using the following syntax:
table [type+] of type

where type+ is one or more types, separated by commas.
The indices can be of the following scalar types: numeric, temporal, enumerations, string,

port, addr, or net. The yield can be of any type. So, for example:
global a: table[count] of string;

declares a to be a table indexed by a count value and yielding a string value, similar
to a regular array in a language like C. The yield type can also be more complex:

Chapter 3: Values, Types, and Constants 26

global a: table[count] of table[addr, port] of conn_id;

declares a to be a table indexed by count and yielding another table, which itself is
indexed by an addr and a port to yield a conn_id record.

This second example illustrates a multi-dimensional table, one indexed not by a single
value but by a tuple of values.

3.12.2 Initializing Tables

You initialize tables by enclosing a set of initializers within braces. Each initializer looks
like:

[expr-list] = expr
where expr-list is a comma-separated list of expressions corresponding to an index of the

table (so, for a table indexed by count, for example, this would be a single expression of
type count) and expr is the yield value to assign to that index.

For example,
global a: table[count] of string = {

[11] = "eleven",
[5] = "five",

};

initializes the table a to have two elements, one indexed by 11 and yielding the string
"eleven" and the other indexed by 5 and yielding the string "five". (Note the comma after
the last list element; it is optional, similar to how C allows final commas in declarations.)

You can also group together a set of indices together to initialize them to the same value:
type HostType: enum { DeskTop, Server, Router };
global a: table[addr] of HostType = {

[[155.26.27.2, 155.26.27.8, 155.26.27.44]] = Server,
};

is equivalent to:
type HostType: enum { DeskTop, Server, Router };
global a: table[addr] of HostType = {

[155.26.27.2] = Server,
[155.26.27.8] = Server,
[155.26.27.44] = Server,

};

This mechanism also applies to which can be used in table initializations for any indices of
type addr. For example, if www.my-server.com corresponded to the addresses 155.26.27.2
and 155.26.27.44, then the above could be written:

global a: table[addr] of HostType = {
[[www.my-server.com, 155.26.27.8]] = Server,

};

and if it corresponded to all there, then:
global a: table[addr] of HostType = {

[www.my-server.com] = Server,
};

You can also use multiple index groupings across different indices:

Chapter 3: Values, Types, and Constants 27

global access_allowed: table[addr, port] of bool = {
[www.my-server.com, [21/tcp, 80/tcp]] = T,

};

is equivalent to:
global access_allowed: table[addr, port] of bool = {

[155.26.27.2, 21/tcp] = T,
[155.26.27.2, 80/tcp] = T,
[155.26.27.8, 21/tcp] = T,
[155.26.27.8, 80/tcp] = T,
[155.26.27.44, 21/tcp] = T,
[155.26.27.44, 80/tcp] = T,

};

Fixme: add example of cross-product initialization of sets

3.12.3 Table Attributes

When declaring a table, you can specify a number of attributes that affect its operation:

‘&default’
Specifies a value to yield when an index does not appear in the table. Syntax:

&default = expr

expr can have one of two forms. If it’s type is the same as the table’s yield type,
then expr is evaluated and returned. If it’s type is a function with arguments
whose types correspond left-to-right with the index types of the table, and
which returns a type the same as the yield type, then that function is called
with the indices that yielded the missing value to compute the default value.
For example:

global a: table[count] of string &default = "nothing special";

will return the string "nothing special" anytime a is indexed with a count
value that does not appear in a.
A more dynamic example:

function nothing_special(): string
{
if (panic_mode)

return "look out!";
else

return "nothing special";
}

global a: table[count] of string &default = nothing_special;

An example of using a function that computes using the index:
function make_pretty(c: count): string

{
return fmt("**%d**", c);
}

Chapter 3: Values, Types, and Constants 28

global a: table[count] of string &default = make_pretty;

‘&create_expire’
Specifies that elements in the table should be automatically deleted after a given
amount of time has elapsed since they were first entered into the table. Syntax:

&create_expire = expr

where expr is of type interval.

‘&read_expire’
The same as create_expire except the element is deleted when the given
amount of time has lapsed since the last time the element was accessed from
the table.

‘&write_expire’
The same as &create_expire except the element is deleted when the given
amount of time has lapsed since the last time the element was entered or mod-
ified in the table.

‘&expire_func’
Specifies a function to call when an element is due for expression because of
&create_expire, &read_expire, or &write_expire. Syntax:

&expire_func = expr

expr must be a function that takes two arguments: the first one is a table with
the same index and yield types as the associated table. The second one is of
type any and corresponds to the index(es) of the element being expired. The
function must return an interval value. The interval indicates for how much
longer the element should remain in the table; returning 0 secs or a negative
value instructs Bro to go ahead and delete the element.
Deficiency: The use of an any type here is temporary and will be changing in
the future to a general tuple notion.

You specify multiple attributes by listing one after the other, without commas between
them:

global a: table[count] of string &default="foo" &write_expire=5sec;

Note that you can specify each type of attribute only once. You can, however, spec-
ify more than one of &create_expire, &read_expire, or &write_expire. In that case,
whenever any of the corresponding timers expires, the element will be deleted.

3.12.4 Accessing Tables

As usual, you access the values in tables by indexing them with a value (for a single index)
or list of values (multiple indices) enclosed in []’s. Deficiency: Presently, when indexing
a multi-dimensional table you must provide all of the relevant indices; you can’t leave one
out in order to extract a sub-table.

You can also index arrays using record’s, providing the record is comprised of values
whose types match that of the table’s indices. (Any record fields whose types are themselves
records are recursively unpacked to effect this matching.) For example, if we have:

local b: table[addr, port] of conn_id;

Chapter 3: Values, Types, and Constants 29

local c = 131.243.1.10;
local d = 80/tcp;

then we could index b using b[c, d], but if we had:
local e = [$field1 = c, $field2 = d];

we could also index it using a[d]

You can test whether a table holds a given index using the in operator:
[131.243.1.10, 80/tcp] in b

or
e in b

per the examples above. In addition, if the table has only a single index (not multi-
dimensional), then you can omit the []’s:

local active_connections: table[addr] of conn_id;
...
if (131.243.1.10 in active_connections)

...

3.12.5 Table Assignment

An indexed table can be the target of an assignment:
b[131.243.1.10, 80/tcp] = c$id;

You can also assign to an entire table. For example, suppose we have the global:
global active_conn_count: table[addr, port] of count;

then we could later clear the contents of the table using:
local empty_table: table[addr, port] of count;
active_conn_count = empty_table;

Here the first statement declares a local variable empty_table with the same type as
active_conn_count. Since we don’t initialize the table, it starts out empty. Assigning it to
active_conn_count then replaces the value of active_conn_count with an empty table.
Note: As with record’s, assigning table values results in a shallow copy.

In addition to directly accessing an element of a table by specifying its index, you can
also loop over all of the indices in a table using the statement.

3.12.6 Deleting Table Elements

You can remove an individual element from a table using the statement:
delete active_host[c$id];

will remove the element in active_host corresponding to the connection identifier c$id
(which is a &conn_id record). If the element isn’t present, nothing happens.

3.13 Sets

Sets are very similar to tables. The principle difference is that they are simply a collection
of indices; they don’t yield any values. You declare tables using the following syntax:

set [type+]

Chapter 3: Values, Types, and Constants 30

where, as with tables, type+ is one or more scalar types (or records), separated by
commas.

You initialize sets listing their elements in braces:
global a = { 21/tcp, 23/tcp, 80/tcp, 443/tcp };

which implicitly types a as a set[port] and then initializes it to contain the given 4
port values.

For multiple indices, you enclose each set of indices in brackets:
global b = { [21/tcp, "ftp"], [23/tcp, "telnet"], };

which implicitly b as set[port, string] and then initializes it to contain the given two
elements. (As with tables, the comma after the last element is optional.)

As with tables, you can group together sets of indices:
global c = { [21/tcp, "ftp"], [[80/tcp, 8000/tcp, 8080/tcp], "http"], };

initializes c to contain 4 elements.
Also as with tables, you can use the &create_expire, &read_expire, and &write_

expire attributes to control the automatic expiration of elements in a set. Deficiency:
However, the attribute is not currently supported.

You can test for whether a particular member is in a set using the add elements using
the add statement:

add c[443/tcp, "https"];

and can remove them using the delete statement:
add d[21/tcp, "ftp"];

Also, as with tables, you can assign to the entire set, which assigns a
Finally, as with tables, you can loop over all of the indices in a set using the statement.

3.14 Files

Deficiency: Bro currently supports only a very simple notion of files. You can only write to
files, you can’t read from them: and files are essentially untyped—the only values you can
write to them are string’s or values that can be converted to string.

You declare file variables simply as type file:
global f: file;

You can create values of type file by using the function:
f = open("suspicious_info.log");

will create (or recreate, if it already exists) the file suspicious info.log and open it for
writing. You can also use to append to an existing file (or create a new one, if it doesn’t
exist).

You write to files using the print statement:
print f, 5 * 6;

will print the text 30 to the file corresponding to the value of f.
There is no restriction regarding how many files you can have open at a given time.

In particular, even if your system has a limit imposed by RLIMIT NOFILE as set by the

Chapter 3: Values, Types, and Constants 31

system call setrlimit. If, however, you want to to close a file, you can do so using close,
and you can test whether a file is open using active-file.

Finally, you can control whether a file is buffered using set-buf, and can flush the
buffers of all open files using flush-all.

3.15 Functions

You declare a Bro function type using:
function(argument*) : type

where argument is a (possibly empty) comma-separated list of arguments, and the final
“: type” declares the return type of the function. It is optional; if missing, then the function
does not return a value.

Each argument is declared using:
param-name : type

So, for example:
function(a: addr, p: port): string

corresponds to a function that takes two parameters, a of type addr and p of type port,
and returns a value of type string.

You could furthermore declare:
global generate_id: function(a: addr, p: port): string;

to define generate_id as a variable of this type. Note that the declaration does not
define the body of the function, and, indeed, generate_id could have different function
bodies at different times, by assigning different function values to it.

When defining a function including its body, the syntax is slightly different:
function func-name (argument*) [: type] { statement* }

That is, you introduce func-name, the name of the function, between the keywork
function and the opening parenthesis of the argument list, and you list the statements
of the function within braces at the end.

For the previous example, we could define its body using:
function generate_id(a: addr, p: port): string

{
if (a in local_servers)

Ignore port, they’re always the same.
return fmt("server %s", a);

if (p < 1024/tcp)
Privileged port, flag it.
return fmt("%s/priv-%s", a, p);

Nothing special - default formatting.
return fmt("%s/%s", a, p);
}

We also could have omitted the first definition; a function definition like the one imme-
diately above automatically defines generate_id as a function of type function(a: addr,

Chapter 3: Values, Types, and Constants 32

p: port): string. Note though that if func-name was indeed already declared, then the
argument list much match exactly that of the previous definition. This includes the names
of the arguments; Unlike in C, you cannot change the argument names between their first
(forward) definition and the full definition of the function.

You can also define functions without using any name. These are referred to as are a
type of expression.

You can only do two things with functions: or assign them. As an example of the latter,
suppose we have:

local id_funcs: table[conn_id] of function(p: port, a: addr): string;

would declare a local variable indexed by a
same type as in the previous example. You could then execute:

id_funcs[c$id] = generate_id

or call whatever function is associated with a given conn_id:
print fmt("id is: %s", id_funcs[c$id](80/tcp, 1.2.3.4));

3.16 Event handlers

Event handlers are nearly identical in both syntax and semantics to functions, with the two
differences being that event handlers have no return type since they never return a value,
and you cannot call an event handler. You declare an event handler using:

event (argument*)

So, for example,
local eh: event(attack_source: addr, severity: count)

declares the local variable eh to have a type corresponding to an event handler that
takes two arguments, attack_source of type addr, and severity of type count.

To declare an event handler along with its body, the syntax is:
event handler (argument) { statement }

As with functions, you can assign event handlers to variables of the same type. Instead
of calling event handlers like functions, though, instead they are invoked. This can happen
in one of three ways:

‘From the event engine’
When the event engine detects an event for which you have defined a corre-
sponding event handler, it queues an event for that handler. The handler is
invoked as soon as the event engine finishes processing the current packet (and
invoking any other event handlers that were queued first). The various event
handlers known to the event engine are discussed in Chapter N .

‘Via the event statement’
The event statement queues an event for the given event handler for immediate
processing. For example:

event password_exposed(c, user, password);

queues an inovocation of the event handler password_exposed with the argu-
ments c, user, and password. Note that password_exposed must have been
previously declared as an event handler with a compatible set of arguments.

Chapter 3: Values, Types, and Constants 33

Or, if we had a local variable eh as defined above, we could execute:
event eh(src, how_severe);

if src is of type addr and how_severe of type count.

‘Via the schedule expression’
The expression queues an event for future invocation. For example:

schedule 5 secs { password_exposed(c, user, password) };

would cause password_exposed to be invoked 5 seconds in the future.

3.17 The any type

The any type is a type used internally by Bro to bypass strong typing. For example, the
function takes arguments of type any, because its arguments can be of different types, and
of variable length. However, the any type is not supported for use by the user; while Bro
lets you declare variables of type any, it does not allow assignment to them. This may
change in the future. Note, though, that you can achieve some of the same effect using
record values with &optional fields.

Chapter 4: Statements and Expressions 34

4 Statements and Expressions

You express Bro’s analysis of network traffic using event handlers, which, as discussed in
XX, are essentially subroutines written in Bro’s policy scripting language. In this chapter
we discuss the different types of statements and expressions available for expressing event
handlers and the auxiliary functions they use.

4.1 Statements

Bro functions and event handlers are written in an imperative style, and the statements
available for doing so are similar to those provided in C. As in C, statements are terminated
with a semi-colon. There are no restrictions on how many lines a statement can span.
Whitespace can appear between any of the syntatic components in a statement, and its
presence always serves as a separator (that is, a single syntactic component cannot in
general contain embedded whitespace, unless it is escaped in some form, such as appearing
inside a string literal).

Bro provides the following types of statements:
expression

Syntax:
expr ;

As in C, an expression by itself can also be used as a statement. For example,
assignments, calling functions, and scheduling timers are all expressions; they
also are often used as statements.

print

Syntax:
print file expr-list ;

The expressions are converted to a list of strings, which are then printed as a
comma-separated list. If the first expression is of type , then the other expres-
sions are printed to the corresponding file; otherwise they’re written to stdout.
For control over how the strings are formatted, see the fmt function.

log

Syntax:
log expr-list ;

The expressions are converted to a list of strings, which are then logged
as a comma-separated list. “Logging” means recording the values to
‘bro-log-file’. In addition, if Bro is reading live network traffic (as opposed
to from a trace file), then the messages are also reported via syslog(3) at level
LOG NOTICE. If the message does not already include a timestamp, one is
added.
See the log module for a discussion of controlling logging behavior from your
policy script. In particular, an important feature of the log statement is that
prior to logging the giving string(s), Bro first invokes log-hook to determine
whether to suppress the logging.

event

Chapter 4: Statements and Expressions 35

Syntax:
event expr (expr-list*) ;

Evaluates expr to obtain an event handler and queues an event for it with the
value corresponding to the optional comma-separated list of values given by
expr-list.
Note: event statements look syntactically just like function calls, other than
the keyword “event”. However, function-call-expr, while queueing an event
is not, since it does not return a value.

if

Syntax:
if (expr) stmt
if (expr) stmt else stmt2

Evaluates expr, which must yield a bool value. If true, executes stmt. For the
second form, if false, executes stmt2.

for

Syntax:
for (var in expr) stmt

Iterates over the indices of expr, which must evaluate to either a set or a
table. For each iteration, var is set to one of the indices and stmt is executed.
var needn’t have been previously declared (in which case its type is implicitly
inferred from that of the indices of expr), and must not be a global variable.
If expr is a set, then the indices correspond to the members of the set. If expr
is a table, then they correspond to the indices of the table.
Deficiency: You can only use for statements to iterate over sets and tables with
a single, non-compound index type. You can’t iterate over multi-dimensional or
compound indices.
Deficiency: Bro lacks ways of controlling the order in which it iterates over the
indices.

next

Syntax:
next ;

Only valid within a for statement. When executed, causes the loop to proceed
to the next iteration value (i.e., the next index value).

break

Syntax:
break ;

Only valid within a for statement. When executed, causes the loop to imme-
diately exit.

return

Syntax:
return expr ;

Chapter 4: Statements and Expressions 36

Immediately exits the current function or event handler. For a function, returns
the value expr (which is omitted if the function does not return a value, or for
event handlers).

add

Syntax:

add expr1 expr2 ;

Adds the element specified by expr2 to the set given by expr1. For example,

global active_hosts: set[addr, port];
...
add active_hosts[1.44.33.7, 80/tcp];

addes an element corresponding to the pair 1.44.33.7 and 80/tcp to the set
active hosts.

delete

Syntax:

delete expr1 [expr2] ;

Deletes the corresponding value, where expr1 corresponds to a set or table, and
expr2 an element/index of the set/table. If the element is not in the set/table,
does nothing.

compound

Compound statements are formed from a list of (zero or more) statements
enclosed in {}’s:

{ statement* }

null

A lone:

;

denotes an empty, do-nothing statement.

local,const

Syntax:

local var : type = initialization attributes ;
const var : type = initialization attributes ;

Declares a local variable with the given type, initialization, and attributes, all of
which are optional. The syntax of these fields is the same as for global-vars.
The second form likewise declares a local variable, but one which is constant :
trying to assign a new value to it results in an error. Deficiency:Currently, this
const restriction isn’t detected/enforced.

Unlike with C the scope of a local variable is from the point of declaration to
the end of the encompassing function or event handler.

Chapter 4: Statements and Expressions 37

4.2 Expressions

Expressions in Bro are very similar to those in C, with similar precedence:

parenthesized

Syntax:

(expr)

Parentheses are used as usual to override precedence.

constant

Any constant value is an expression.

variable

The name of a variable is an expression.

increment,decrement

Syntax:

++ expr
– expr

Increments or decrements the given expression, which must correspond to an
assignable value (variable, table element, or record element) and of a number
type.

Yields the value of the expression after the increment.

Unlike with C, these operators only are defined for “pre”-increment/decrement;
there is no post-increment/decrement.

negation

Syntax:

! expr
- expr

Yields the boolean or arithmetic negation for values of boolean or numeric (or
interval) types, respectively.

positivation

Syntax:

+ expr

Yields the value of expr, which must be of type numeric or interval.

The point of this operator is to explicitly convert a value of type count to int.
For example, suppose you want to declare a local variable code to be of type
int, but initialized to the value 2. If you used:

local code = 2;

then Bro’s implicit typing would make it of type count, because that’s the type
of a numeric-constants. You could instead use:

local code = +2;

to direct the type inferencing to instead assign a type of int to code. Or, of
course, you could specify the type explicitly:

Chapter 4: Statements and Expressions 38

local code:int = 2;

arithmetic

Syntax:
expr1 + expr2
expr1 - expr2
expr1 * expr2
expr1 / expr2
expr1 % expr2

The usual C arithmetic operators, defined for numeric types, except modulus
(%) is only defined for integral types.

logical

Syntax:
expr1 && expr2
expr1 || expr2

The usual C logical operators, defined for boolean types.
equality

Syntax:
expr1 == expr2 \ expr1 "!= expr2

rel-operators, Compares two values for equality or inequality, yielding a bool
value. Defined for all non-compound types except pattern.

relational

Syntax:
expr1 < expr2 \ expr1 <= expr2 \ expr1 > expr2 \ expr1 >= expr2

Compares two values for magnitude ordering, yielding a bool value. Defined
for values of type numeric, time, interval, port, or addr.
Note: TCP port values are considered less than UDP port values.
Note: IPv4 addr values less than IPv6 addr values.
Deficiency: Should also be defined at for string values.

conditional

Syntax:
expr1 ? expr2 : expr3

Evaluates expr1 and, if true, evaluates and yields expr2, otherwise evaluates
and yields expr3. expr2 and expr3 must have compatible types.

assignment

Syntax:
expr1 = expr2

Assigns the value of expr2 to the storage defined by expr1, which must be
an assignable value (variable, table element, or record element). Yields the
assigned value.

function call

Chapter 4: Statements and Expressions 39

Syntax:
expr1 (expr-list2)

Evaluates expr1 to obtain a value of type function, which is then invoked
with its arguments bound left-to-right to the values obtained from the comma-
separated list of expressions expr-list2. Each element of expr-list2 must be
assignment-compatible with the corresponding formal argument in the type of
expr1. The list may (and must) be empty if the function does not take any
parameters.

anonymous function

Syntax:
function (parameters) body

Defines an anonymous function, which, in abstract terms, is how you specify a
constant of type function. parameters has the syntax of parameter declara-
tions for functions, as does body, which is just a list of statements enclosed in
braces.
Anonymous functions can be used anywhere you’d usually instead use a function
declared in the usual direct fashion. For example, consider the function:

function demo(msg: string): bool
{
if (msg == "do the demo")

{
print "got it";
return T;
}

else
return F;

}

You could instead declare demo as a global variable of type function:
global demo: function(msg: string): bool;

and then later assign to it an anonymous function:
demo = function (msg: string): bool

{
if (msg == "do the demo")

{
print "got it";
return T;
}

else
return F;

};

You can even call the anonymous function directly:
(function (msg: string): bool

{
if (msg == "do the demo")

Chapter 4: Statements and Expressions 40

{
print "got it";
return T;
}

else
return F;

})("do the demo")

though to do so you need to enclose the function in parentheses to avoid con-
fusing Bro’s parser.
One particularly handy form of anonymous function is that used for &default.

event scheduling

Syntax:
schedule expr1 { expr2 (expr-list3) }

Evaluates expr1 to obtain a value of type interval, and schedules the event
given by expr2 with parameters expr-list3 for that time. Note that the ex-
pressions are all evaluated and bound at the time of execution of the schedule
expression; evaluation is not deferred until the future execution of the event
handler.
For example, we could define the following event handler:

event once_in_a_blue_moon(moon_phase: interval)
{
print fmt("wow, a blue moon - phase %s", moon_phase);
}

and then we could schedule delivery of the event for 6 hours from the present,
with a moon phase of 12 days, using:

schedule +6 hr { once_in_a_blue_moon(12 days) };

Note: The syntax is admittedly a bit clunky. In particular, it’s easy to (i)
forget to include the braces (which are needed to avoid confusing Bro’s parser),
(ii) forget the final semi-colon if the schedule expression is being used as an
expression-statement, or (iii) erroneously place a semi-colon after the event
specification but before the closing brace.
Timer invocation is inexact. In general, Bro uses arriving packets to serve as
its clock (when reading a trace file off-line, this is still the case—the timestamp
of the latest packet read from the trace is used as the notion of “now”). Once
this clock reaches or passes the time associated with a queued event, Bro will
invoke the event handler, which is termed “expiring” the timer. (However,
Bro will only invoke max-timer-expires timers per packet, and these include
its own internal timers for managing connection state, so this can also delay
invocation.)
It will also expire all pending timers (whose time has not yet arrived) when Bro
terminates; if you don’t want those event handlers to activate in this instance,
you need to test done-with-network.
You would think that schedule should just be a statement like event-
invocation is, rather than an expression. But it actually does return a value,

Chapter 4: Statements and Expressions 41

of the undocumented type timer. In the future, Bro may provide mechanisms
for manipulating such timers; for example, to cancel them if you no longer
want them to expire.

index

Syntax:
expr1 [expr-list2]

Returns the sub-value of expr1 indexed by the value of expr-list2, which must
be compatible with the index type of expr1.
expr-list2 is a comma-separated list of expressions (with at least one expression
listed) whose values are matched left-to-right against the index types of expr1.
The only type of value that can be indexed in this fashion is a table. Note:
set’s cannot be indexed because they do not yield any value. Use in to test for
set membership.

membership

Syntax:
expr1 in expr2
expr1 !in expr2

Yields true (false, respectively) if the index expr1 is present in the table or
set expr2.
For example, if alert level is a table index by an address and yielding a count:

global alert_level: table[addr] of count;

then we could test whether the address 127.0.0.1 is present using:
127.0.0.1 in alert_level

For table’s and set’s indexed by multiple dimensions, you enclose expr1 in
brackets. For example, if we have:

global connection_seen: set[addr, addr];

then we could test for the presence of the element indexed by 8.1.14.2 and
129.186.0.77 using:

[8.1.14.2, 129.186.0.77] in connection_seen

We can also instead use a corresponding record type. If we had
local t = [$x = 8.1.14.2, $y = 129.186.0.77]

then we could test:
t in connection_seen

pattern matching

Syntax:
expr1 == expr2
expr1 "!= expr2
expr1 in expr2
expr1 "!in expr2

As discussed for pattern values. the first two forms yield true (false) if the
pattern expr1 exactly matches the string expr2. (You can also list the string
value on the left-hand side of the operator and the pattern on the right.)

Chapter 4: Statements and Expressions 42

The second two forms yield true (false) if the pattern expr1 is present within the
string expr2. (For these, you must list the pattern as the left-hand operand.)

record field access

Syntax:
expr $ field-name

Returns the given field field-name of the record expr. If the record does not
contain the given field, a compile-time error results.

record constructor

Syntax:
[field-constructor-list]

Constructs a record value. The field-constructor-list is a comma-separated list
of individual field constructors, which have the syntax:

$ field-name = expr
For example,

[$foo = 3, $bar = 23/tcp]

yields a record with two fields, foo of type count and bar of type port. The
values used in the constructor needn’t be constants, however; they can be any
expression of an assignable type.

record field test

Syntax:
expr ?$ field-name

Returns true if the given field has been set in the record yielded by expr. Note
that field-name must correspond to one of the fields in the record type of expr
(otherwise, the expression would always be false). The point of this operator is
to test whether an &optional field of a record has been assigned to.
For example, suppose we have:

type rap_sheet: record {
num_scans: count &optional;
first_activity: time;

};
global the_goods: table[addr] of rap_sheet;

and we want to test whether the address held in the variable perp exists in
the goods and, if so, whether num scans has been assigned to, then we could
use:

perp in the_goods && the_goods[perp]?$num_scans

Chapter 5: Global and Local Variables 43

5 Global and Local Variables

5.1 Variables Overview

Bro variables can be complicated to understand because they have a number of possibilities
and features. They can be global or local in scope; modifiable or constant (unchangeable);
explicitly or implicitly typed; optionally initialized; defined to have additional attributes;
and, for global variables, redefined to have a different initialization or different attributes
from their first declaration.

Rather than giving the full syntax for variable declarations, which is messy, in the
following sections we discuss each of these facets of variables in turn, illustrating them with
the minimal necessary syntax. However, keep in mind that the features can be combined
as needed in a variable declaration.

5.1.1 Scope

Global variables are available throughout your policy script (once declared), while the scope
of local variables is confined to the function or event handler in which they’re declared. You
indicate the variable’s type using a corresponding keyword:

global name : type ;

or
local name : type ;

which declares name to have the given type and the corresponding scope.
You can intermix function/event handler definitions with declarations of global variables,

and, indeed, they’re in fact the same thing (that is, a function or event handler definition
is equivalent to defining a global variable of type function or event and associating its
initial value with that of the function or event handler). So the following is fine:

global a: count;

function b(p: port): string
{
if (p < 1024/tcp)

return "privileged";
else

return "ephemeral";
}

global c: addr;

However, you cannot mix declarations of global variables with global statements; the
following is not allowed:

print "hello, world";
global a: count;

Local variables, on the other hand, can only be declared within a function or event
handler. (Unlike for global statements, these declarations can come after statements.)
Their scope persists to the end of the function. For example:

Chapter 5: Global and Local Variables 44

function b(p: port): string
{
if (p < 1024/tcp)

local port_type = "privileged";
else

port_type = "ephemeral";

return port_type;
}

5.1.2 Modifiability

For both global and local variables, you can declare that the variable cannot be modified by
declaring it using the const keyword rather than global or local:

const response_script = "./scripts/nuke-em";

Note that const variables must be initialized (otherwise, of course, there’s no way for
them to ever hold a useful value).

The utility of marking a variable as unmodifiable is for clarity in expressing your script—
making it explicit that a particular value will never change—and also allows Bro to possibly
optimize accesses to the variable (though it does little of this currently).

Note that const variables can be redefined via redef.

5.1.3 Typing

When you define a variable, you can explicitly type it by specifying its type after a colon.
For example,

global a: count;

directly indicates that a’s type is count.

However, Bro can also implicitly type the variable by looking at the type of the expression
you use to initialize the variable:

global a = 5;

also declares a’s type to be count, since that’s the type of the initialization expression
(the constant 5). There is no difference between this declaration and:

global a: count = 5;

except that it is more concise both to write and to read. In particular, Bro remains
strongly typed, even though it also supports implicit typing; the key is that once the type
is implicitly inferred, it is thereafter strongly enforced.

Bro’s type inference is fairly powerful: it can generally figure out the type whatever
initialization expression you use. For example, it correctly infers that:

global c = { [21/tcp, "ftp"], [[80/tcp, 8000/tcp, 8080/tcp], "http"], };

specifies that c’s type is set[port, string]. But for still more complicated expressions, it
is not always able to infer the correct type. When this occurs, you need to explicitly specify
the type.

Chapter 5: Global and Local Variables 45

5.1.4 Initialization

When defining a variable, you can optionally specify an initial value for the variable:
global a = 5;

indicates that the initial value of a is the value 5 (and also implicitly types a as type
count, per Section 5.1.3 [Typing], page 44).

The syntax of an initialization is “= expression”, where the given expression must be
assignment-compatible with the variable’s type (if explicitly given). Tables and sets also
have special initializer forms, which are discussed in XXX and XXX.

5.1.5 Attributes

When defining a variable, you can optionally specify a set of attributes associated with the
variable, which specify additional properties associated with it. Attributes have two forms:

& attr
for attributes that are specified simply using their name, and

& attr = expr
for attributes that have a value associated with them.
The attributes &redef &add_func and &delete_func, pertain to redefining variables;

they are discussed in Section 5.1.6 [Refinement], page 45.
The attributes &default, &create_expire, &read_expire, &write_expire, and

&expire_func are for use with table’s and set’s. See XXX for discussion.
The attribute &optional specifies that a record field is optional. See for discussion.
Finall, to specify multiple attributes, you do not separate them with commas (doing so

would actually make Bro’s grammar ambiguous), but just list them one after another. For
example:

global a: table[port] of string &redef &default="missing";

5.1.6 Refinement

To do: &redef
&add func
&delete func

Chapter 6: Predefined Variables and Functions 46

6 Predefined Variables and Functions

6.1 Predefined Variables

Bro predefines and responds to the following variables, organized by the policy file in which
they are contained. Note that you will only be able to access the variables in a policy file
if you load it or a policy file which loads it.

6.1.1 active.bro

active_conn : table[conn_id] of connection

A table of connection records corresponding to all active connec-
tions.

6.1.2 alert.bro

alert_action_filters : table[Alert] of function(a: alert_info:
AlertAction

A table that maps each alert into a function that should be called
to determine the action.

alert_file : file

The file into which alerts are written.

6.1.3 anon.bro

anon_log : file

The file into which anonymization Fixme: Add a reference to doc
on anonymization when it is available. IP address mappings are
written.

preserved_subnet : set[subnet]

Addresses in these subnet are preserved when anonymization is
being performed. See also preservied_net. NOTE: The variable
const. so may only be changed via redef

preserved_net : set[net]

These Class A/B/C nets are preserved when anonymization is being
performed. See also preserved_subnet.

6.1.4 backdoor.bro

backdoor_log : file

The file into which alerts about backdoor servers () are written.

backdoor_min_num_lines : count

The number of lines of Fixme: must be telnet? input and output
must be more than this amount to trigger backdoor checking.
Note: This variable is const, so may only be changed via redef.

backdoor_min_normal_line_ratio : double

Chapter 6: Predefined Variables and Functions 47

If the fraction of “normal” (less than a certain length) lines is below
this value, then backdoor checking is not performed.
Note: This variable is const, so may only be changed via redef.

backdoor_min_bytes : count

The total number of bytes transferred on the connection must be
at least this large in order for backdoor checking to be performed.
Note: This variable is const, so may only be changed via redef.

backdoor_min_7bit_ascii_ratio : double

The fraction of 7-bit ASCII characters out of all bytes transferred
must be at least this large in order for backdoor checking to be
performed.
Note: This variable is const, so may only be changed via redef.

backdoor_demux_disabled : bool

If T (the default), then suspected backdoor connections are not
demuxed into sender and receiver streams.
Note: This variable is const, so may only be changed via redef.

backdoor_demux_skip_tags : set[string]

If the type of backdoor (the tag) is in this set, the connection will
not be demuxed.
Note: This variable is const, so may only be changed via redef.

backdoor_ignore_src_addrs : table[string, addr] of bool

If the suspected backdoor name (“*” for any) and source address (or
its /16 or /24) subnet are in this table as a pair, then the backdoor
will not be logged.
Note: This variable is const, so may only be changed via redef.

backdoor_ignore_dst_addrs : table[string, addr] of bool

If the suspected backdoor name (“*” for any) and destination ad-
dress (or its /16 or /24) subnet are in this table as a pair, then the
backdoor will not be logged.
Note: This variable is const, so may only be changed via redef.

backdoor_ignore_ports : table[string, port] of bool

The following (signature, well-known port) paits should not gener-
ated a backdoor alert.
Note: This variable is const, so may only be changed via redef.

backdoor_standard_ports : set[port]

See backdoor_annotate_standard_ports.
Note: This variable is const, so may only be changed via redef.

backdoor_stat_period : inverval

A report on backdoor stats is generated at this interval.
Note: This variable is const, so may only be changed via redef.

backdoor_stat_backoff : interval

Fixme: Not sure about the exact definition here The backdoor re-
port interval (backdoor_stat_period) is increased by this factor

Chapter 6: Predefined Variables and Functions 48

each time it is generated, except if the timers are artificially ex-
pired.
Note: This variable is const, so may only be changed via redef.

backdoor_annotate_standard_ports : bool

If T (the default), backdoors alerts for those on backdoor_
standard_ports should be annotated with the backdoor tag
name.
Note: This variable is const, so may only be changed via redef.

ssh_sig_disabled : bool

If T (default = F), then matches against the SSH signature are
ignored.
Note: This variable is const, so may only be changed via redef.

telnet_sig_disabled : bool

If T (default = F), then matches against the telnet signature are
ignored.
Note: This variable is const, so may only be changed via redef.

telnet_sig_3byte_disabled : bool

If T (default = F), then matches against the 3-byte telnet signature
are ignored.
Note: This variable is const, so may only be changed via redef.

rlogin_sig_disabled : bool

If T (default = F), then matches against the rlogin signature are
ignored.
Note: This variable is const, so may only be changed via redef.

rlogin_sig_1byte_disabled : bool

If T (default = F), then matches against the 1-byte rlogin signature
are ignored.
Note: This variable is const, so may only be changed via redef.

root_backdoor_sig_disabled : bool

If T (default = F), then matches against the root backdoor signa-
ture are ignored.
Note: This variable is const, so may only be changed via redef.

ftp_sig_disabled : bool

If T (default = F), then matches against the FTP signature are
ignored.
Note: This variable is const, so may only be changed via redef.

napster_sig_disabled : bool

If T (default = F), then matches against the Napster signature are
ignored.
Note: This variable is const, so may only be changed via redef.

gnutella_sig_disabled : bool

Chapter 6: Predefined Variables and Functions 49

If T (default = F), then matches against the Gnutella signature are
ignored.
Note: This variable is const, so may only be changed via redef.

kazaa_sig_disabled : bool

If T (default = F), then matches against the KaZaA signature are
ignored.
Note: This variable is const, so may only be changed via redef.

http_sig_disabled : bool

If T (default = F), then matches against the HTTP signature are
ignored.
Note: This variable is const, so may only be changed via redef.

http_proxy_sig_disabled : bool

If T (default = F), then matches against the HTTP proxy signature
are ignored.
Note: This variable is const, so may only be changed via redef.

did_sigconns : table[conn_id] of set[string]

A table which indicates, for each connection, which backdoor server
signatures were found in the connection’s traffic, e.g., “ftp-sig” or
“napster-sig”.

rlogin_conns : table[conn_id] of rlogin_conn_info

A table that holds relevant state variables (an rlogin_conn_info
record) for rsh connections.

root_backdoor_sig_conns : set[conn_id]

The set of connections for which a root backdoor signature (“root-
bd-sig”) has been detected.

ssh_len_conns : set[conn_id]

The set of connections that are predicted to contain SSH traffic,
based on the proportion of packets that meet the expected packet
size distribution. Relevant parameters are ssh_min_num_pkts and
ssh_min_ssh_pkts_ratio, which are local to backdoor.

ssh_min_num_pkts : count

The minimum number of packets that look like SSH packets that
allow a stream to be classified as such.

ssh_min_ssh_pkts_ratio : double

The minimum fraction of packets in a stream that look like SSH
packets that allow a stream to be classified as such.
Note: This variable is const, so may only be changed via redef.

telnet_sig_conns : table[conn_id] of count

The set of connections that are predicted to be Telnet connections,
based on observation of the Telnet signature, the IAC byte (0xff).

telnet_sig_3byte_conns : table[conn_id] of count

Similar to telnet_sig_conns, but the signature matched is a whole
3-byte Telnet command sequence.

Chapter 6: Predefined Variables and Functions 50

6.1.5 bro.init

ignore_checksums : bool

If T (default = F), packet checksums are not verified.
Note: This variable is const, so may only be changed via redef.

partial_connection_ok : bool

If T (the default), instantiate connection state when a partial con-
nection (one missing its initial establishment negotiation) is seen.
Note: This variable is const, so may only be changed via redef.

tcp_SYN_ack_ok : bool

If T (the default), instantiate connection state when a SYN ack
is seen but not the initial SYN (even if partial connection ok is
false).
Note: This variable is const, so may only be changed via redef.

tcp_match_undelivered : bool

If a connection state is removed there may still be some undelivered
data waiting in the reassembler. If T (the default), pass this to the
signature engine before flushing the state.
Note: This variable is const, so may only be changed via redef.

tcp_SYN_timeout : interval

Check up on the result of an initial SYN after this much time.
Fixme: What exactly does this mean? Check that the connection is
active?
Note: This variable is const, so may only be changed via redef.

tcp_session_timer : interval

After a connection has closed, wait this long for further activity
before checking whether to time out its state.
Note: This variable is const, so may only be changed via redef.

tcp_connection_linger : interval

When checking a closed connection for further activity, consider
it inactive if there hasn’t been any for this long. Complain if the
connection is reused before this much time has elapsed.
Note: This variable is const, so may only be changed via redef.

tcp_attempt_delayv : interval

Wait this long upon seeing an initial SYN before timing out the
connection attempt.
Note: This variable is const, so may only be changed via redef.

tcp_close_delay : interval

Upon seeing a normal connection close, flush state after this much
time.
Note: This variable is const, so may only be changed via redef.

tcp_reset_delay : interval

Upon seeing a RST, flush state after this much time.
Note: This variable is const, so may only be changed via redef.

Chapter 6: Predefined Variables and Functions 51

tcp_partial_close_delay : interval

Generate a connection partial close event this much time after one
half of a partial connection closes, assuming there has been no
subsequent activity.
Note: This variable is const, so may only be changed via redef.

non_analyzed_lifetime : interval

If a connection belongs to an application that we don’t analyze,
time it out after this interval. If 0 secs, then don’t time it out.
Note: This variable is const, so may only be changed via redef.

inactivity_timeout : interval

If a connection is inactive, time it out after this interval. If 0 secs,
then don’t time it out.
Note: This variable is const, so may only be changed via redef.

tcp_storm_thresh : count

This many FINs/RSTs in a row constitutes a "storm". See also
tcp_storm_interarrival_thresh.
Note: This variable is const, so may only be changed via redef.

tcp_storm_interarrival_thresh : interval

The FINs/RSTs must come with this much time or less between
them to be considered a storm. See also tcp_storm_thresh.
Note: This variable is const, so may only be changed via redef.

tcp_reassembler_ports_orig : set[port]

For services without a handler, these sets define which side of a
connection is to be reassembled. Fixme: What is the point of this
exactly? What are you analyzing?
Note: This variable is const, so may only be changed via redef.

tcp_reassembler_ports_resp : set[port]

For services without a handler, these sets define which side of a
connection is to be reassembled. Fixme: What is the point of this
exactly? What are you analyzing?
Note: This variable is const, so may only be changed via redef.

table_expire_interval : interval

Check for expired table entries after this amount of time Fixme:
Which tables?
Note: This variable is const, so may only be changed via redef.

dns_session_timeout : interval

Time to wait before timing out a DNS request.
Note: This variable is const, so may only be changed via redef.

ntp_session_timeout : interval

Time to wait before timing out an NTP request.
Note: This variable is const, so may only be changed via redef.

rpc_timeout : interval

Chapter 6: Predefined Variables and Functions 52

Time to wait before timing out an RPC request.
Note: This variable is const, so may only be changed via redef.

watchdog_interval : interval

A SIGALRM is set for this interval to make sure that Bro does not
get caught up doing something for too long. Fixme: True? If this
happens, Bro is termination after doing a dump of all remaining
packets.
Note: This variable is const, so may only be changed via redef.

heartbeat_interval : interval

After each interval of this length, update the variable.
Note: This variable is const, so may only be changed via redef.

anonymize_ip_addr : bool

If true (default = false), then IP addresses are anonymized in alert
and log generation.
Note: This variable is const, so may only be changed via redef.

omit_rewrite_place_holder : bool

If true, omit place holder packets when rewriting. Fixme: Should
this go somewhere else?
Note: This variable is const, so may only be changed via redef.

rewriting_http_trace : bool

If true (default = F), HTTP traces are rewritten.
Note: This variable is const, so may only be changed via redef.

rewriting_smtp_trace : bool

If true (default = F), SMTP traces are rewritten.
Note: This variable is const, so may only be changed via redef.

6.1.6 code-red.bro

code_red_log file

The file into which Code Red-related alerts are written.
code_red_list1 : table[addr] of count

A table which contains, for each IP address, how many Code Red
I attacks were observed (based on a signature) by the machine at
that address.

code_red_list2 : table[addr] of count

A table which contains, for each IP address, how many Code Red
II attacks were observed (based on a signature) by the machine at
that address.

local_code_red_response_pgm : string

By default, an empty string; if &redefed, the specified program
will be invoked with the attack source IP as the argument the first
time an attack from that IP is observed.

remote_code_red_response_pgm : string

Chapter 6: Predefined Variables and Functions 53

By default, an empty string; if &redefed, the specified program
will be invoked with the attack destination IP as the argument the
first time an attack on that IP is observed.

6.1.7 conn.bro

have_FTP : bool

If true, ftp.bro has been loaded.
have_SMTP : bool

If true, smtp.bro has been loaded.
have_stats : bool

True if was ever updated with packet capture statistics.
hot_conns_reported : set[string]

The set of connections (indexed by the entire ’hot’ message) that
have previously been flagged as hot.

last_stat : net_stats

The last recorded snapshot of packet capture statistics, in a record.
last_stat_time : time

The last time that network statistics were read into .
RPC_server_map : table[addr, port] of string

Maps a given port on a given server’s address to an RPC service.
If we haven’t loaded portmapper.bro, then it will be empty; see
portmapper.bro and the portmapper module documentation for
more information.

6.1.8 demux.bro

For more information on demultiplexing of connections, see the demux module (ref here
XXX).

demux_dir : string

The name of the directory which will contain the files with demul-
tiplexed connection data.

demuxed_conn : set[conn_id]

The set of connections that are currently being demultiplexed.

6.1.9 dns.bro

actually_rejected_PTR_anno : set[string]

Annotations that if returned for a PTR lookup actually indicate a
rejected query; for example, "illegal-address.lbl.gov".
Note: This variable is const, so may only be changed via redef.

sensitive_lookup_hosts : set[addr]

Hosts in this set generate an alert when they are returned in
PTR queries, unless the originating host is in sensitive_lookup_
hosts.
Note: This variable is const, so may only be changed via redef.

Chapter 6: Predefined Variables and Functions 54

okay_to_lookup_sensitive_hosts : set[addr]

If the DNS request originator is in this set, then it is allowed to look
up “sensitive” hosts (see also sensitive_lookup_hosts) without
causing an alert.

dns_log : file

The file into which DNS-related alerts are written.
dns_sessions : table[addr, addr] of dns_session_info

A table of outstanding DNS sessions indexed by [client IP, server
IP]. Fixme: Need to illustrate dns sessions info.

num_dns_sessions : count

The total number of entries that have ever been in the table.
distinct_PTR_requests : table[addr, string] of count

The number of DNS PTR requests obseverd with the given source
address and request string.

distinct_rejected_PTR_requests : table[addr] of count

How many DNS PTR requests from the given source address were
rejected. A report is generated if this number crosses a threshold,
namely, report_rejected_PTR_thresh.

distinct_answered_PTR_requests : table[addr] of count

How many DNS PTR requests from the given source address were
rejected.

report_rejected_PTR_thresh : count

If this many DNS requests from a host are rejected, generate a
possible PTR scan event.

report_rejected_PTR_factor : double

If DNS requests from a host are rejected more than accepted by
this factor, generate a event.

allow_PTR_scans set[addr]

The set of hosts for which a PTR_scan event does not generate a
report (that is, the scan is allowed).

did_PTR_scan_event table[addr] of count

A table of hosts for which a event has been generated.

6.1.10 dns-mapping.bro

dns_interesting_changes

The set of DNS mapping changes (according to lookups by Bro
itself) that is interesting enough to alert on.
Note: This variable is const, so may only be changed via redef.

6.1.11 finger.bro

hot_names : set[string]

Chapter 6: Predefined Variables and Functions 55

If a finger request for any of the names in this set is observed, the
associated connection is marked “hot”.
Note: This variable is const, so may only be changed via redef.

max_finger_request_len : count

If a finger request is longer than this length, then it is marked as
“hot”.
Note: This variable is const, so may only be changed via redef.

rewrite_finger_trace : bool

Indicates whether or not finger requests are rewritten for
anonymity.

6.1.12 ftp.bro

ftp_log : file

The file into which FTP-related alerts are written.
ftp_sessions : table[conn_id] of ftp_session_info

ftp_guest_ids : set[string]

The set of login IDs which are guest logins, e.g., “anonymous” and
“ftp”.
Note: This variable is const, so may only be changed via redef.

ftp_skip_hot : set[addr, addr, string]

Indexed by source and destination addresses and the id, these con-
nections are not marked as “hot” even if its data would to cause it
to be otherwise.
Note: This variable is const, so may only be changed via redef.

ftp_hot_files : pattern

If a filename matching this pattern is requested, the ftp_
sensitive_files event is generated. The default behavior is to
log the connection.
Note: This variable is const, so may only be changed via redef.

ftp_hot_guest_files : pattern

If a user is logged in under a guest ID and attempts to retrieve a
file matching this pattern, the ftp_sensitive event is generated.
The default behavior is to log the connection.
Note: This variable is const, so may only be changed via redef.

ftp_hot_cmds : table[string] of pattern

If an FTP command matches an index into the table and its argu-
ment matches the associated pattern, the connection is logged.
Note: This variable is const, so may only be changed via redef.

skip_unexpected : set[addr]

Pairs of IP addresses for which we shouldn’t bother logging if one
of them is used in lieu of the other in a PORT or PASV directive.

skip_unexpected_net : set[addr]

Chapter 6: Predefined Variables and Functions 56

Similar to skip_unexpected, but matches a /24 subnet.
ftp_data_expected : table[addr, port] of addr

Indexed by the server’s responder pair, yields the address expected
to make an FTP data connection to it.

ftp_data_expected_session : table[addr, port] of ftp_session_info

Indexed by the server’s responder pair, yields the associated ftp_
session_info record for the expected incoming FTP data connec-
tion.

ftp_excessive_filename_len : count

If an FTP request filename meets or exceeds this length, an FTP_
ExcessiveFilename alert is generated.

ftp_excessive_filename_trunc_len : count

How much of the excessively long filename is printed in the alert
message.

ftp_ignore_invalid_PORT : pattern

Invalid PORT/PASV directives that exactly match this pattern
don’t generate alerts.

ftp_ignore_privileged_PASVs : set[port]

If an FTP PASV port is specified to be a privileged port (<
1024/tcp) then an FTP_PrivPort event is generated, EXCEPT if
the port is in this set.

6.1.13 hot.bro

same_local_net_is_spoof : bool

If true (default = F), it should be considered a spoofing attack if a
connection has the same local net for source and destination.
Note: This variable is const, so may only be changed via redef.

allow_spoof_services : set[port]

The services in this set are not counted as spoofed even if they pass
the test from same_local_net_is_spoof.
Note: This variable is const, so may only be changed via redef.

allow_pairs : set[addr, addr]

Connections between these (source address, destination address)
pairs are never marked as “hot”.
Note: This variable is const, so may only be changed via redef.

allow_16_net_pairs : set[addr, addr]

Connections between these (/16 network, /32 destination host)
pairs are never marked as “hot”.
Note: This variable is const, so may only be changed via redef.

hot_srcs : table[addr] of string

Connections from any of these sources are automatically marked
“hot” with the associated message in the table.
Note: This variable is const, so may only be changed via redef.

Chapter 6: Predefined Variables and Functions 57

hot_dsts : table[addr] of string

Connections to any of these destinations are automatically marked
“hot” with the associated message in the table.
Note: This variable is const, so may only be changed via redef.

hot_src_24nets : table[addr] of string

Connections from any of these source /24 nets are automatically
marked “hot” with the associated message in the table.
Note: This variable is const, so may only be changed via redef.

hot_dst_24nets : table[addr] of string

Connections to any of these destination /24 nets are automatically
marked “hot” with the associated message in the table.
Note: This variable is const, so may only be changed via redef.

allow_services : set[port]

Connections to this set of services are never marked “hot” (based
on port number).
Note: This variable is const, so may only be changed via redef.

allow_services_to : set[addr, port]

Connections to the specified host and port are never marked “hot”.
Note: This variable is const, so may only be changed via redef.

allow_service_pairs : set[addr, addr, port]

Connections from the first address to the second on the specified
destination port are never marked “hot”.
Note: This variable is const, so may only be changed via redef.

flag_successful_service : table[port] of string

Successful connections to any of the specified ports are flagged with
the accompanying message. Examples are popular backdoor ports.
Note: This variable is const, so may only be changed via redef.

flag_successful_inbound_service : table[port] of string

Incoming connections to the specified ports are flagged with the
accompanying message. This is similar to , but may be used when
the port gives to many false positives for outgoing connections.
Note: This variable is const, so may only be changed via redef.

terminate_successful_inbound_service : table[port] of string

Connections to this port, if previously flagged by flag_
successful_service or flag_incoming_service are
terminated.
Note: This variable is const, so may only be changed via redef.

flag_rejected_service : table[port] of string

Failed connection attempts to the specified ports are marked as
“hot”.
Note: This variable is const, so may only be changed via redef.

Chapter 6: Predefined Variables and Functions 58

6.1.14 hot-ids.bro

forbidden_ids : set[string]

If any of these usernames/login IDs are used, the corresponding
connection is terminated.
Note: This variable is const, so may only be changed via redef.

forbidden_ids_if_no_password : set[string]

If any of these usernames/login IDs are used with no password, the
corresponding connection is terminated.
Note: This variable is const, so may only be changed via redef.

forbidden_id_patterns : pattern

If a username/login ID matches this pattern, the corresponding
connection is terminated.
Note: This variable is const, so may only be changed via redef.

always_hot_ids : set[string]

Connections that attempt to login with these IDs are always marked
“hot”, whether or not they succeed. See also hot_ids.
Note: This variable is const, so may only be changed via redef.

hot_ids : set[string]

Similar to , except that only successful connections are marked
“hot”.
Note: This variable is const, so may only be changed via redef.

6.1.15 http.bro

http_log : file

The file into which HTTP-related alerts are written.
http_sessions : table[addr, addr] of http_session_info

A [source, destination] indexed table of http_session_info
records.

include_HTTP_abstract : bool

Currently used to indicate whether or not an abstract of the HTTP
request data will be included in a rewritten connection.

log_HTTP_data : bool

If true, an abstract of the HTTP request data is included in a log
message.

maintain_http_sessions : bool

If true, HTTP sessions are maintained across multiple connections,
otherwise we not (which saves some memory).

process_HTTP_replies : bool

If true, HTTP replies (not just requests) are processed.
process_HTTP_data : bool

If true, HTTP data is examined as needed (e.g., for making HTTP
abstracts, as discussed below).

Chapter 6: Predefined Variables and Functions 59

6.1.16 http-abstract.bro

http_abstract_max_length : count

The maximum number of bytes used to store an abstract for an
HTTP connection.
Note: This variable is const, so may only be changed via redef.

6.1.17 http-request.bro

skip_remote_sensitive_URIs : pattern

URIs matching this pattern should not be considered sensitive if
accessed remotely, i.e., by a local client.

have_skip_remote_sensitive_URIs : bool

Due to a quirk in Bro, this must be redef’ed to T if you want to
use skip_remote_sensitive_URIs.
Note: This variable is const, so may only be changed via redef.

sensitive_URIs : pattern

URIs matching this pattern, but not matching worm_URIs, are
logged. See also skip_remote_sensitive_URIs and senstive_
post_URIs.
Note: This variable is const, so may only be changed via redef.

worm_URIs : pattern

URIs matching this pattern are not logged even if they match
sensitive_URIs, since worms are so common they would clutter
the logs.
Note: This variable is const, so may only be changed via redef.

sensitive_post_URIs : pattern

URIs matching this pattern are logged if they are used with the
HTTP “POST” method (rather than “GET”).
Note: This variable is const, so may only be changed via redef.

6.1.18 icmp.bro

icmp_flows : table[icmp_flow_id] of icmp_flow_info

A table tracking all ICMP “flows” by icmp_flow_info. “Flows”,
which are simply inferred related sequences of packets between two
machines, based on ICMP ID, are timed out after (currently) 30
seconds of inactivity.

6.1.19 ident.bro

hot_ident_ids : set[string]

If any of the User IDs in this set are returned in an ident response,
an IdentSensitiveID alert is generated.

hot_ident_exceptions : set[string]

Exceptions to the hot_ident_ids set.
public_ident_user_ids : set[string]

Chapter 6: Predefined Variables and Functions 60

User IDs in this set are described as “public” in a rewritten ident
trace.

public_ident_systems : set[string]

Operating system names in this set (e.g., “UNIX”) are reported
directly in a rewritten ident trace; other OSes will be reported as
“OTHER”.

rewrite_ident_trace : bool

If true, traces will be rewritten (partially anonymized).

6.1.20 interconn.bro

interconn_conns : table [conn_id] of conn_info

A conn_id-indexed table of all currently-tracked interactive con-
nections. The table entries are records containing some very basic
information about the connection.

interconn_log : file

The file into which generic interactive-connection-related alerts are
written.

interconn_min_interarrival : interval

Used in computing the “alpha” parameter, which is used to deter-
mine which connections are interactive, based on the distribution
of interarrival times. See also interconn_max_interarrival.
Note: This variable is const, so may only be changed via redef.

interconn_max_interarrival : interval

Used in computing the “alpha” parameter, which is used to deter-
mine which connections are interactive, based on the distribution
of interarrival times. See also interconn_max_interarrival.
Note: This variable is const, so may only be changed via redef.

interconn_max_keystroke_pkt_size : count

The maximum packet size used to classify keystroke-containing
packets.
Note: This variable is const, so may only be changed via redef.

interconn_default_pkt_size : count

The estimated packet size used to calculate the number of packets
missed when we see an ack above a hole. Fixme: Please verify.
Note: This variable is const, so may only be changed via redef.

interconn_stat_period : interval

How often to generate a report of interconn stats.
Note: This variable is const, so may only be changed via redef.

interconn_stat_backoff : double

Fixme: I don’t fully understand is expire in timers. The stat re-
port generation interval (interconn_stat_period) is increased by
this factor each time the report is generated [unless the report is

Chapter 6: Predefined Variables and Functions 61

generated because all timers are artifically expired].
Note: This variable is const, so may only be changed via redef.

interconn_min_num_pkts : count

A connection must have this number of packets transferred before
it may be classified as interactive.
Note: This variable is const, so may only be changed via redef.

interconn_min_duration : interval

A connection must last least this long before it may be classified as
interactive.
Note: This variable is const, so may only be changed via redef.

interconn_ssh_len_disabled : bool

If false (default = T), and at least one side of the connection has
partial state (the initial negotiation was missed), then packets are
examined to see if they fit the size distribution associated with
interactive SSH connections.
Note: This variable is const, so may only be changed via redef.

interconn_min_ssh_pkts_ratio : double

Analogous to ssh_min_ssh_pkts_ratio, except used in the context
described in interconn_ssh_len_disabiled.
Note: This variable is const, so may only be changed via redef.

interconn_min_bytes : count

The number of bytes transferred on a connection must be at least
this high before the connection may be classified as interactive.
Note: This variable is const, so may only be changed via redef.

interconn_min_7bit_ascii_ratio : double

The ratio of 7-bit ASCII characters to total bytes must be at least
this high before the connection may be classified as interactive.
Note: This variable is const, so may only be changed via redef.

interconn_min_num_lines : count

The number of lines transferred on a connection must be at least
this high before the connection may be classified as interactive.
Note: This variable is const, so may only be changed via redef.

interconn_min_normal_line_ratio : double

The ratio of “normal” lines to total lines must be at least this
high before the connection may be classified as interactive. A nor-
mal line, roughly speaking, is one whose length is within a certain
bound. Fixme: Please verify this.
Note: This variable is const, so may only be changed via redef.

interconn_min_alpha : double

The “alpha” parameter computed on connection must be at least
this high before the connection may be classified as interactive.
This parameter measures certain properties of packet interarrival

Chapter 6: Predefined Variables and Functions 62

times. See interconn.
Note: This variable is const, so may only be changed via redef.

interconn_min_gamma : double

The “gamme” parameter computed on connection must be at least
this high before the connection may be classified as interactive.

interconn_standard_ports : set[port]

Connections to or from these ports are marked as interactive auto-
matically, unless interconn_standard_ports is set to true.
Note: This variable is const, so may only be changed via redef.

interconn_ignore_standard_ports : bool

If true (default = F), then all connections are analyzed for interac-
tive patterns, regardless of port. See interconn_standard_ports.
Note: This variable is const, so may only be changed via redef.

interconn_demux_disabled : bool

If false (default = T), then interactive connections are demuxed
when being logged.
Note: This variable is const, so may only be changed via redef.

6.1.21 login.bro

input_trouble : pattern

If a user’s keystroke input matches this pattern, then an alert is
generated.

edited_input_trouble : pattern

If a user’s keystroke input matches this pattern, taking into account
backspace and delete characters, then an alert is generated.

full_input_trouble : pattern

If this pattern is matched in a full line of input, an alert is generated.
input_wait_for_output : pattern

The same as edited_input_trouble, except that the alert is de-
layed until the corresponding output is seen, so that both may be
logged together.

output_trouble : pattern

If the login output matches this pattern, an alert is generated.
full_output_trouble : pattern

Similar to output_trouble, but the pattern must match the entire
output.

backdoor_prompts : pattern

If the login output matches this text, but not non_backdoor_
prompts, generate a possible-backdoor alert.

non_backdoor_prompts : pattern

See backdoor_prompts.
hot_terminal_types : pattern

Chapter 6: Predefined Variables and Functions 63

If the terminal type used matches this pattern, generate an alert.
hot_telnet_orig_ports : set[port]

If the source port of a telnet connection is in this set, generate an
alert.

skip_authentication : set[string]

If a string in this set appears where an authentication prompt would
normally, skip processing of authentication (typically for an unau-
thenticated system). Fixme: Please verify.
Note: This variable is const, so may only be changed via redef.

login_prompts : set[string]

The set of strings that are recognized as login prompts anywhere
on a line, e.g., “Login:”.
Note: This variable is const, so may only be changed via redef.

login_failure_msgs : set[string]

If any of these strings appear on a line following an authentication
attempt, the attempt is considered to have failed, unless a string
from login_non_failure_msgs also appears on the line. This set
has higher precedence than login_success_msgs, and the same
precedence as login_timeouts.
Note: This variable is const, so may only be changed via redef.

login_non_failure_msgs : set[string]

If any of these strings appear on a line following an authentication
attempt, the connection is not considered to have failed even if
login_failure_msgs indicates otherwise.
Note: This variable is const, so may only be changed via redef.

login_success_msgs : set[string]

If any of these messages is seen, the connection attempt is assumed
to have succeeded. This set has lower precedence than login_
failure_msgs and login_timeouts .
Note: This variable is const, so may only be changed via redef.

login_timeouts : set[string]

If any of these messages is seen during the login phase, the con-
nection attempt is assumed to have timed out. This set has higher
precedence than login_success_msgs, and the same precedence
as login_failure_msgs.

router_prompts : pattern

Fixme: Don’t know what this is
non_ASCII_hosts : set[addr]

The set of hosts that do not use ASCII (and to whom logins are
thus not processed).

skip_logins_to : set[addr]

Do not process logins to this set of hosts.

Chapter 6: Predefined Variables and Functions 64

always_hot_login_ids : pattern

Login names which generate an alert even if the login is not suc-
cessful.

hot_login_ids : pattern

Login names which generate an alert, if the login is successful.

rlogin_id_okay_if_no_password_exposed : set[string]

Login names in this set are those which are normally considered
sensitive, but are allowed if the associated password is not exposed.

login_sessions : table[conn_id] of login_session_info

A table, indexed by connection ID, of login_session_info
records, characterizing each login session.

6.1.22 mime.bro
mime_log : file

MIME message-related alerts are logged to this file.

mime_sessions : table[conn_id] of mime_session_info

A table, indexed by connection ID, of mime_session_info records,
characterizing each MIME session.

check_relay_3 function(session: mime_session_info, msg_id:
string): bool

Fixme: Don’t know about this

check_relay_4 function(session: mime_session_info, content_hash:
string): bool

Fixme: Don’t know about this

6.1.23 ntp.bro
excessive_ntp_request : count

NTP requests over this length are considered “excessive” and will
be flagged (marked “hot”).
Note: This variable is const, so may only be changed via redef.

allow_excessive_ntp_requests : set[addr]

NTP requests from an address in this set are never considered ex-
cessively long (see excessive_ntp_request).
Note: This variable is const, so may only be changed via redef.

6.1.24 port-names.bro
port_names : table[port] of string

A mapping of well-known port numbers to the associated service
names.
Note: This variable is const, so may only be changed via redef.

Chapter 6: Predefined Variables and Functions 65

6.1.25 portmapper.bro

rpc_programs : table[count] of string

A table correlating numeric RPC service IDs to string names of the
services, e.g., [1000000] = ‘‘portmapper’’.

NFS_services : set[string]

A set of string names of NFS-related RPC services.
Note: This variable is const, so may only be changed via redef.

RPC_okay : set[addr, addr, string]

Indexed by the host providing the service, the host requesting it,
and the service; do not log Sun portmapper requests from the spec-
ified requestor to the specified provider for the specified service.
Note: This variable is const, so may only be changed via redef.

RPC_okay_nets : set[net]

Hosts in any of the networks in this set may make portmapper
requests without being flagged.
Note: This variable is const, so may only be changed via redef.

RPC_okay_services : set[string]

Requests for services in this set will not be flagged.
Note: This variable is const, so may only be changed via redef.

NFS_world_servers : set[addr]

Any host may request NFS services from any of the machines in
this set without being flagged..
Note: This variable is const, so may only be changed via redef.

any_RPC_okay : set[addr, string]

Indexed by the service provider and the service (in string form);
any host may access these services without being flagged.
Note: This variable is const, so may only be changed via redef.

RPC_dump_okay : set[addr, addr]

Indexed by requesting host and providing host, respectively; dumps
of RPC portmaps are allowed between these pairs.
Note: This variable is const, so may only be changed via redef.

RPC_do_not_complain : set[string, bool]

Indexed by the portmapper request and a boolean that’s T if the
request was answered, F it was attempted but not answered. If
there’s an entry in the set matching the current request/attempt,
then the access won’t be logged (unless the connection is hot for
some other reason).

suppress_pm_log : set[addr, string]

Indexed by source and portmapper service. If set, we already logged
and shouldn’t do so again. Fixme: Presumably this can be preloaded
with stuff, or we wouldn’t need to document it.

Chapter 6: Predefined Variables and Functions 66

6.1.26 rules.bro

rule_actions : table[string] of count

Decide what to do when each rule (the index into the table) trig-
gers: Ignore the rule (RULE IGNORE); Process the rule but don’t
report it individually (RULE QUIET); Log the match into rule_
file (RULE FILE); Log the match into both rule_file and the
overall log file (generate an alert) (RULE LOG). The default is
RULE FILE.
Note: This variable is const, so may only be changed via redef.

rule_file : file

The file into which rule-based alerts are logged.
Note: This variable is const, so may only be changed via redef.

horiz_scan_thresholds : set[count]

Log if for a pair (orig, rule) the number of different responders has
reached one of the thresholds in this set.
Note: This variable is const, so may only be changed via redef.

vert_scan_thresholds : set[count]

Log if for a pair (orig, resp) the number of different rule matches
has reached one of the thresholds in this set.
Note: This variable is const, so may only be changed via redef.

6.1.27 scan.bro

suppress_scan_checks : bool

If true, we suppress scan checking (we still do account-tried ac-
counting). This is provided because scan checking can consume a
lot of memory.

report_peer_scan : set[count]

When the number of distinct machines connected to by a given
external host reaches each of the levels in the set, an alert is gen-
erated.
Note: This variable is const, so may only be changed via redef.

report_outbound_peer_scan : set[count]

When the number of distinct machines connected to by a given
internal host reaches each of the levels in the set, an alert is gener-
ated.
Note: This variable is const, so may only be changed via redef.

num_distinct_peers : table[addr] of count

A table indexed by a host’s address which indicates how many
distinct machines that host has connected to.

distinct_peers : set[addr,addr]

A table indexed by source host and target machine that tracks
which machines have been scanned by each host.

num_distinct_ports : table[addr] of count

Chapter 6: Predefined Variables and Functions 67

A table indexed by a host’s address which indicates how many
distinct ports that host has connected to.

distinct_ports : set[addr, port]

A table indexed by source host and target port that tracks which
ports have been scanned by each host.

report_port_scan : set[count]

When the number of distinct ports connected to by a given external
host reaches each of the levels in the set, an alert is generated.
Note: This variable is const, so may only be changed via redef.

possible_port_scan_thresh : count

If a host tries to connect to more than this number of ports, it is
considered a possible scanner.
Note: This variable is const, so may only be changed via redef.

possible_scan_sources : set[addr]

Hosts are put in this set once they have scanned more than ports.
num_scan_triples : table[addr, addr] of count

Indexed by source address and destination address, the number of
services scanned for on the latter by the former. This is only tracked
for possible_scan_sources.

scan_triples : set[addr, addr, port]

For possible_scan_sources as a source address, the triples of
(source address, destination address, and service/port) scanned.

accounts_tried : set[addr, string, string]

Which account names were tried, indexed by source address, user
name tried, password tried.

num_accounts_tried : table[addr] of count

How many accounts, as defined by a (user name, password) pair,
were tried by the host with the given address.

report_accounts_tried : set[count]

When the number of distinct accounts (username, password) tried
by a given external host reaches each of the levels in the set, an
alert is generated.
Note: This variable is const, so may only be changed via redef.

report_remote_accounts_tried : set[count]

When the number of distinct remote accounts (username, pass-
word) tried by a given internal host reaches each of the levels in
the set, an alert is generated.
Note: This variable is const, so may only be changed via redef.

skip_accounts_tried : set[addr]

Hosts in this set are not subject to alerts based on report_
accounts_tried and report_remote_accounts_tried.
Note: This variable is const, so may only be changed via redef.

Chapter 6: Predefined Variables and Functions 68

addl_web : set[port]

Ports in this set are treated as HTTP services.
Note: This variable is const, so may only be changed via redef.

skip_services : set[port]

Connections to ports in this set are ignored for the purposes of scan
detection.
Note: This variable is const, so may only be changed via redef.

skip_outbound_services : set[port]

Connections to external machines on ports in this set are ignored
for the purposes of scan detection.
Note: This variable is const, so may only be changed via redef.

skip_scan_sources : set[addr]

Hosts in this set are ignored as possible sources of scans.
Note: This variable is const, so may only be changed via redef.

skip_scan_nets_16 : set[addr,port]

Connections matching the specified (source host /16 subnet, port)
pairs are ignored for the purpose of scan detection.
Note: This variable is const, so may only be changed via redef.

skip_scan_nets_24 : set[addr,port]

Connections matching the specified (source host /24 subnet, port)
pairs are ignored for the purpose of scan detection.
Note: This variable is const, so may only be changed via redef.

backscatter_ports : set[port]

Reverse (SYN-ack) scans seen from these ports are considered to
reflect possible SYN flooding backscatter and not true (stealth)
scans.
Note: This variable is const, so may only be changed via redef.

num_backscatter_peers : table[addr] of count

Indexed by a host, how many other hosts it connected to with a
possible backscatter signature.

distinct_backscatter_peers : table[addr, addr] of count

A table of [source, destination] observed backscatter activity; the
table entry is a count of backscatter packets from the source to the
destination.

report_backscatter : set[count]

When the number of machines that a host has sent backscatter
packets to reaches each of the levels in the set, an alert is generated.
Fixme: Need to document connection-dropping related variables.

global can_drop_connectivity = F &redef;
global drop_connectivity_script = "drop-connectivity" &redef;
global connectivity_dropped set[addr];
const shut_down_scans: set[port] &redef;

Chapter 6: Predefined Variables and Functions 69

const shut_down_all_scans = F &redef;
const shut_down_thresh = 100 &redef;
never_shut_down set[addr]
never_drop_nets set[net]
never_drop_16_nets set[net]
did_drop_address table[addr] of count

root_servers : set[host]

The set of root DNS servers.
Note: This variable is const, so may only be changed via redef.

gtld_servers : set[host]

The set of Generic Top-Level Domain servers (.com, .net, .org,
etc.).
Note: This variable is const, so may only be changed via redef.

6.1.28 site.bro

local_nets : set[net]

Class A/B/C networks that are considered “local”.
Note: This variable is const, so may only be changed via redef.

local_16_nets : set[addr]

/16 address blocks that are considered “local”. These are derived
directly from local_nets . Fixme: Please verify this.
Note: This variable is const, so may only be changed via redef.

local_24_nets : set[addr]

/24 address blocks that are considered “local”. These are derived
directly from local_nets. Fixme: Please verify this.
Note: This variable is const, so may only be changed via redef.

neighbor_nets : set[net]

Class A/B/C networks that are considered “neighbors”. Note that
unlike for local nets, local_16_nets is not merely a /16 addr ver-
sion of neighbor nets, but instead is consulted in addition to neigh-
bor nets.
Note: This variable is const, so may only be changed via redef.

neighbor_16_nets : set[addr]

/16 address blocks that are considered “neighbors”. Note that
unlike for local nets, neighbor 16 nets is not merely a /16 addr
version of neighbor_nets, but instead is consulted in addition to
neighbor_nets.
Note: This variable is const, so may only be changed via redef.

6.1.29 smtp.bro

local_mail_addr : pattern

Email addresses matching this pattern are considered to be local.
This is used to detect relaying.

Chapter 6: Predefined Variables and Functions 70

smtp_log : file

The file into which SMTP-related alerts are written.

smtp_sessions : table[conn_id] of smtp_session_info

A table of smtp_session_info records tracking SMTP-related
state for a given connection.

process_smtp_relay : bool

If true (default = F), processing is done to check for mail relaying.
Note: This variable is const, so may only be changed via redef.

type smtp_session_info: record {
id: count;
connection_id: conn_id;
external_orig: bool;
in_data: bool;
num_cmds: count;
num_replies: count;
cmds: smtp_cmd_info_list;
in_header: bool;
keep_current_header: bool; # a hack till MIME rewriter is ready
recipients: string;
subject: string;
content_hash: string;
num_lines_in_body: count; # lines in RFC 822 body before MIME decoding
num_bytes_in_body: count; # bytes in entity bodies after MIME decoding
content_gap: bool; # whether there is content gap in conversation

relay_1_rcpt: string; # external recipients
relay_2_from: count; # session id of same recipient
relay_2_to: count;
relay_3_from: count; # session id of same msg id
relay_3_to: count;
relay_4_from: count; # session id of same content hash
relay_4_to: count;
};

smtp_legal_cmds : set[string]

The set of allowed SMTP commands (not currently used). Fixme:
Is it used somewhere?

smtp_hot_cmds : table[string] of pattern

If an SMTP command matching an index into the table has an
argument matching the associated pattern, then the request and
its reply are logged.

smtp_sensitive_cmds : set[string]

If an SMTP command is in this set, the request and its reply are
logged.

Chapter 6: Predefined Variables and Functions 71

6.1.30 smtp-relay.bro

relay_log : file

Alerts related to email relaying go in this file.

smtp_relay_table : table[count] of smtp_session_info

A table indexed by SMTP session ID (session$id) that keeps track
of each session in an record.

smtp_session_by_recipient : table[string] of smtp_session_info

A table indexed by the recipient that holds the corresponding smtp_
session_info record.

smtp_session_by_message_id : table[string] of smtp_session_info

A table indexed by the email message ID that holds the correspond-
ing smtp_session_info record.

smtp_session_by_content_hash : table[string] of smtp_session_info

A table indexed by the MD5 hash of the message that holds the
corresponding record. Fixme: Currently unimplemented?

6.1.31 software.bro

software_file : file

Alerts related to host software detection go in this file.

software_table : table[addr] of software_set

A table of the software running on each host. A software_set is
itself a table, indexed by the name of the software, of software
records.

software_ident_by_major : set[string]

Software names in this set could be installed twice on the same
machine with different major version numbers. Such software is
identified as “Software-N” where N is the major version number,
to disambiguate the two.

6.1.32 ssh.bro

ssh_log : file

Alerts related to ssh connections go in this file.

did_ssh_version : table[addr, bool] of count

Indexed by host IP and (T for client, F for server), the table tracks
if we have recorded the SSH version. Values of one and greater are
essentially equivalent.

6.1.33 stepping.bro

step_log : file

Alerts related to stepping-stone detection go in this file.

display_pairs : table[addr, string] of connection

Chapter 6: Predefined Variables and Functions 72

If <conn> was a login to <dst> propagating a $DISPLAY of <dis-
play>, then we make an entry of [<dst>, <display>] = <conn>.

tag_to_conn_map : table[string] of connection

Maps login tags like "Last login ..." to connections.
conn_tag_info : table[conn_id] of tag_info

A table, indexed by connection ID, of the tag_info related to it.
Roughly, “tag info” consists of login strings like “Last login” and
$DISPLAY variables. Since this information can stay constant across
stepping stones, it is used to detect them.

detected_stones : table[addr, port, addr, port, addr, port, addr,
port] of count

Indexed by two pairs of connections: (addr,port)->(addr,port) and
(addr,port)->(addr,port) that have been detected to be multiple
links in a stepping stone chain. The table value is the “score” of
the pair of connections; the higher the score, the more likely it is
to be a real stepping stone pair. More points are assigned for a
timing-based correlation than, say, a $DISPLAY-based correlation.

did_stone_summary : table[addr, port, addr, port, addr, port, addr,
port] of count

Basically tracks which suspected stepping stone connection pairs
have had alerts generated for them. See detected_stones for the
indexing scheme.

stp_delta : interval

Note: This variable is const, so may only be changed via redef.
stp_idle_min : interval

Note: This variable is const, so may only be changed via redef.
stp_ratio_thresh : double

For timing correlations, the proportion of idle times that must
match up for the correlation to be considered significant.
Note: This variable is const, so may only be changed via redef.

stp_scale : double

Note: This variable is const, so may only be changed via redef.
stp_common_host_thresh : count

Note: This variable is const, so may only be changed via redef.
stp_random_pair_thresh : count

Note: This variable is const, so may only be changed via redef.
stp_demux_disabled : count

Chapter 6: Predefined Variables and Functions 73

Note: This variable is const, so may only be changed via redef.
skip_clear_ssh_reports : set[addr, string]

Note: This variable is const, so may only be changed via redef.

6.1.34 tftp.bro

tftp_alert_count : table[addr] of count

Keeps track of the number of observed outbound TFTP connections
from each host.

6.1.35 udp.bro

udp_req_count : table[conn_id] of count

Keeps track of the number of UDP requests sent over each connec-
tion.

udp_rep_count : table[conn_id] of count

Fixme: not really sure
udp_did_summary : table[conn_id] of count

Keeps track of which connections have been summarized/recorded
Fixme: what is it really? do people use this?

6.1.36 weird.bro

weird_log : file

Alerts related to weird (unexpected or inconsistent) traffic go in
this file.

weird_action : table[string] of WeirdAction

A table of what to do (a WeirdAction) when faced with a partic-
ular “weird” scenario (the index). Example include logging to the
special “weird” file or ignoring the condition.

weird_action_filters : table[string] of function(c: connection):
WeirdAction

If an entry exists in this table for a given weird situation, then the
corresponding entry is used to determine what action to take; the
default is to look in weird_action.

weird_ignore_host : set[addr, string]

(host, weird condition) pairs in this set are ignored for the purposes
of reporting.
Note: This variable is const, so may only be changed via redef.

weird_do_not_ignore_repeats : set[string]

The included alert conditions are reported even if they are re-
peated.
Note: This variable is const, so may only be changed via redef.

Chapter 6: Predefined Variables and Functions 74

6.1.37 worm.bro

worm_log : file

The file into which worm-detection-related alerts are written.
worm_list : table[addr] of count

A table of infected hosts, indexed by the infected hosts’ addresses.
The value is how many times the instance has been seen sending
packets.

worm_type_list : table[addr, string] of count

A table of infected hosts, indexed by host address and type of worm.
The value is how many times that particular worm has been seen
on the host.

6.1.38 Uncategorized

Fixme: These need categorization.

bro_log_file : file

Used to record the messages logged by log statements.
Default: stderr, unless you @load the log analyzer; see XXX for
further discussion.

capture_filter : string

Specifies what packets Bro’s filter should record .
direct_login_prompts : set[string]

Strings that when seen in a login dialog indicate that the user will be
directly logged in after entering their username, without requiring
a password (See XXX).

discarder_maxlen : int

The maximum amount of data that Bro should pass to a TCP or
UDP discarder (See XXX).
Default: 128 bytes.

done_with_network : bool

Set to true when Bro is done reading from the network (or from
the save files being played back, per XXX). The variable is set by
a handler for net_done.
Default: initially set to false.

interfaces : string

A blank-separated list of network interfaces from which Bro should
read network traffic. Bro merges packets from the interfaces ac-
cording to their timestamps. Deficiency: All interfaces must have
the same link layer type.
If empty, then Bro does not read any network traffic, unless one or
more interfaces are specified using the -i flag.
Note: interfaces has an &add_func that allows you to add inter-
faces to the list simply using a += initialization (See XXX).

Chapter 6: Predefined Variables and Functions 75

Default: empty.
max_timer_expires : count

Sets an upper limit on how many pending timers Bro will expire
per newly arriving packet. If set to 0, then Bro expires all pending
timers whose time has come or past. This variable trades off timer
accuracy and memory requirements (because a number of Bro’s
internal timers relate to expiring state) with potentially bursty load
spikes due to a lot of timers expiring at the same time, which can
trigger the watchdog, if active.

restrict_filter : string

Restricts what packets Bro’s filter should record (See XXX).

6.2 Predefined Functions

Bro provides a number of built-in functions:

active_connection (id: conn_id) : bool

Returns true if the given connection identifier (originator/responder
addresses and ports) corresponds to a currently-active connection.

active_file (f: file): bool

Returns true if the given file is open.
add_interface (iold: string, inew: string): string

Used to refine the initialization of interfaces. Meant for internal
use, and as an example of refinement (See XXX).

add_tcpdump_filter (fold: string, fnew: string): string

Used to refine the initializations of capture_filter and restrict_
filter. Meant for internal use, and as an example of refinement
(See XXX).

log_hook (msg: string): bool

If you define this function, then Bro will call it with each string
it is about to log. The function should return true if Bro should
go ahead and log the message, false otherwise. See for further
discussion and an example.

byte_len (s: string): count

Returns the number of bytes in the given string. This includes any
embedded NULs, and also a trailing NUL, if any (which is why the
function isn’t called strlen; to remind the user that Bro strings can
include NULs).

cat (args: any): string

Returns the concatenation of the string representation of its argu-
ments, which can be of any type. For example, cat("foo", 3, T)
returns "foo3T".

clean (s: string): string

Returns a cleaned up version of s, meaning that:

Chapter 6: Predefined Variables and Functions 76

• embedded NULs become the text “\0”
• embedded DELs (delete characters) become the

text “^?”
• ASCII “control” characters with code <= 26 be-

come the text “^Letter”, where Letter is the cor-
responding (upper case) control character; for ex-
ample, ASCII 2 becomes “^B”

• ASCII “control” characters with codes between 26
and 32 (non-inclusive) become the text “\xhex-
code”; for example, ASCII 31 becomes “\x1f”

• if the string does not yet have a trailing NUL, one
is added.

close (f: file): bool

Flushes any buffered output for the given file and closes it. Returns
true if the file was open, false if already closed or never opened.

connection_record (id: conn_id): connection

Returns the connection record corresponding to the non-existing
connection id if not a known connection. Note: If the connection
does not exist, then exits with a fatal run-time error.
Deficiency: If Bro had an exception mechanism, then we could
avoid the fatal run-time error, and likewise could get rid of active_
connection .

contains_string (big: string, little: string): bool

Returns true if the string little occurs somewhere within big,
false otherwise.

current_time (): time

Returns the current clock time. You will usually instead want to
use network_time.

discarder_check_icmp (i: ip_hdr, ih: icmp_hdr): bool

Not documented.
discarder_check_ip (i: ip_hdr): bool

Not documented.
discarder_check_tcp (i: ip_hdr, t: tcp_hdr, d: string): bool

Not documented.
discarder_check_udp (i: ip_hdr, u: udp_hdr, d: string): bool

Not documented.
edit (s: string, edit_char: string): string

Returns a version of s assuming that edit_char is the “backspace”
character (usually "\x08" for backspace or "\x7f" for DEL). For
example, edit("hello there", "e") returns "llo t".
edit_char must be a string of exactly one character, or Bro gen-
erates a run-time error and uses the first character in the string.

Chapter 6: Predefined Variables and Functions 77

Deficiency: To do a proper job, edit should also know about delete-
word and delete-line editing; and it would be very convenient if it
could do multiple types of edits all in one shot, rather than requiring
separate invocations.

exit (): int

Exits Bro with a status of 0.
Deficiency: This function should probably allow you to specify the
exit status.
Note: If you invoke this function, then the usual cleanup functions
net_done and bro_done are NOT invoked. There probably should
be an additional “shutdown” function that provides for cleaner ter-
mination.

flush_all (): bool

Flushes all open files to disk.
fmt (args: any): string

Performs sprintf-style formatting. The first argument gives the
format specifier to which the remaining arguments are formatted,
left-to-right. As with sprintf, the format for each argument is in-
troduced using “%”, and formats beginning with a positive integer
m specify that the given field should have a width of m characters.
Fields with fewer characters are right-padded with blanks up to
this width.
A format specifier of “.$n” (coming after m, if present) instructs
fmt to use a precision of n digits. You can only specify a precision
for the e, f or g formats. (fmt generates a run-time error if either
m or n exceeds 127.)
The different format specifiers are:

‘%’ A literal percent-sign character.

‘D’ Format as a date. Valid only for values of type time.
The exact format is yy–mm–dd–hh:mm:ss for the local
time zone, per strftime.

‘d’ Format as an integer. Valid for types bool, count,
int, port, addr, and net, with the latter three being
converted from network order to host order prior to
formatting. bool values of true format as the number
1, and false as 0.

‘e, f, g’ Format as a floating point value. Valid for types
double, time, and interval. The formatting is the
same as for printf, including the field width m and
precision n.

Given no arguments, fmt returns an empty string.
Given a non-string first argument, fmt returns the concatenation
of all its arguments, per cat.

Chapter 6: Predefined Variables and Functions 78

Finally, given the wrong number of additional arguments for the
given format specifier, fmt generates a run-time error.

get_login_state (c: conn_id): count

Returns the state of the given login (Telnet or Rlogin) connection,
one of:

‘LOGIN_STATE_AUTHENTICATE’
The connection is in its initial authentication dialog.

‘LOGIN_STATE_LOGGED_IN’
The analyzer believes the user has successfully authen-
ticated.

‘LOGIN_STATE_SKIP’
The analyzer has skipped any further processing of the
connection.

‘LOGIN_STATE_CONFUSED’
The analyzer has concluded that it does not correctly
know the state of the connection, and/or the username
associated with it (See XXX).

connection_id is not a known login connection or a run-time error and a value
of LOGIN_STATE_AUTHENTICATE if the connection is not a login connection.
get_orig_seq (c: conn_id): count

Returns the highest sequence number sent by a connection’s origi-
nator, or 0 if there’s no such TCP connection. Sequence numbers
are absolute (i.e., they reflect the values seen directly in packet
headers; they are not relative to the beginning of the connection).

get_resp_seq (c: conn_id): count

Returns the highest sequence number sent by a connection’s re-
sponder, or 0 if there’s no such TCP connection.

getenv (var: string): string

Looks up the given environment variable and returns its value, or
an empty string if it is not defined.

is_tcp_port (p: port): bool

Returns true if the given port value corresponds to a TCP port,
false otherwise (i.e., it belongs to a UDP port).

length (args: any): count

Returns the number of elements in its argument, which must be
of type table or set. If not exactly one argument is specified, or
if the argument is not a table or a set, then generates a run-time
message and returns 0.
Deficiency: If Bro had a union type, then we could get rid of the
magic “args: any” specification and catch parameter mismatches
at compile-time instead of run-time.

log_file_name (tag: string): string

Chapter 6: Predefined Variables and Functions 79

Returns a name for a log file (such as wierd or red) in a standard
form. The form depends on whether $BRO ID is set. If so, then
the format is “<tag>.<\$BRO_ID>”. Otherwise, it is simply tag.

mask_addr (a: addr, top_bits_to_keep: count): addr

Returns the address a masked down to the number of upper bits
indicated by top_bits_to_keep, which must be greater than 0
and less than 33. For example, mask_addr(1.2.3.4, 18) returns
1.2.0.0, and mask_addr(1.2.255.4, 18) returns 1.2.192.0.
Compare with to_net.

max_count (a: count, b: count): count

Returns the larger of a or b.
max_double (a: double, b: double): double

Returns the larger of a or b.
max_interval (a: interval, b: interval): interval

Returns the larger of a or b.
Deficiency: If Bro supported polymorphic functions, then this func-
tion could be merged with its predecessors, gaining simplicity and
clarity.

min_count (a: count, b: count): count

Returns the smaller of a or b.
min_double (a: double, b: double): double

Returns the smaller of a or b.
min_interval (a: interval, b: interval): interval

Returns the smaller of a or b.
Deficiency: If Bro supported polymorphic functions, then this func-
tion could be merged with its predecessors, gaining simplicity and
clarity.

mkdir (f: string): bool

Creates a directory with the given name, if it does not already
exist. Returns true upon success, false (with a run-time message)
if unsuccessful.

network_time (): time

Returns the timestamp of the most recently read packet, whether
read from a live network interface or from a save file (See XXX).
Compare against current_time. In general, you should use
network_time unless you’re using Bro for non-networking uses
(such as general scripting; not particularly recommended), because
otherwise your script may behave very differently on live traffic
versus played-back traffic from a save file.

open (f: string): file

Opens the given filename for write access. Creates the file if it does
not already exist. Generates a run-time error if the file cannot be
opened/created.

Chapter 6: Predefined Variables and Functions 80

open_for_append (f: string): file

Opens the given filename for append access. Creates the file if it
does not already exist. Generates a run-time error if the file cannot
be opened/created.

open_log_file (tag: string): file

Opens a log file associated with the given tag, using a filename
format as returned by .

parse_ftp_pasv (s: string): ftp_port

Parses the server’s reply to an FTP PASV command to extract the
IP address and port number indicated by the server. The values
are returned in an ftp_port record, which has three fields: h, the
address (h is mnemonic for host); p, the (TCP) port; and valid, a
boolean that is true if the server’s reply was in the required format,
false if not, or if any of the individual values (or the indicated port
number) are out of range.

parse_ftp_port (s: string): ftp_port

Parses the argument included in a client’s FTP PORT request to
extract the IP address and port number indicated by the server.
The values are returned in an ftp_port, which has three fields, as
indicated in the discussion of parse_ftp_pasv.

reading_live_traffic (): bool

Returns true if Bro was invoked to read live network traffic (from
one or more network interfaces, per), false if it’s reading from save
files being played back .
Note: This function returns true even after Bro has stopped reading
network traffic, for example due to receiving a termination signal.
(See XXX)

set_buf (f: file, buffered: bool)

Specifies that writing to the given file should either be fully buffered
(if buffered is true), or line-buffered (if false). Does not return a
value.

set_contents_file (c: conn_id, direction: count, f: file): bool

Specifies that the traffic stream of the given connection in the given
direction should be recorded to the given file. direction is one of
the values given in the table below.

Direction Meaning
CONTENTS_NONE Stop recording the connection’s content
CONTENTS_ORIG Record the data sent by the connection orginator

(often the client).
CONTENTS_RESP Record the data sent by the connection responder

(often the server).
CONTENTS_BOTH Record the data sent in both directions.

Table 6.1: Different types of directions for set_contents file

Chapter 6: Predefined Variables and Functions 81

Note: CONTENTS BOTH results in the two directions being in-
termixed in the file, in the order the data was seen by Bro.
Note: The data recorded to the file reflects the byte stream, not
the contents of individual packets. Reordering and duplicates are
removed. If any data is missing, the recording stops at the missing
data; see ack_above_hole for how this can happen.
Deficiency: Bro begins recording the traffic stream starting with new
traffic it sees. Experience has shown it would be highly handy if Bro
could record the entire connection to the file, including previously
seen traffic. In principle, this is possible if Bro is recording the
traffic to a save file (see XXX) , which a separate utility program
could then read to extract the stream.
Returns true upon success, false upon an error.

set_login_state (c: conn_id, new_state: count): bool

Manually sets the state of the given login (Telnet or Rlogin) con-
nection to new_state, which should be one of the values described
in .
Generates a run-time error and returns false if the connection is
not a login connection. Otherwise, returns true.

set_record_packets (c: conn_id, do_record: bool): bool

Controls whether Bro should or should not record the packets cor-
responding to the given connection to the save file , if any.
Returns true upon success, false upon an error.

skip_further_processing (c: conn_id): bool

Informs bro that it should skip any further processing of the con-
tents of the given connection. In particular, Bro will refrain from re-
assembling the TCP byte stream and from generating events relat-
ing to any analyzers that have been processing the connection. Bro
will still generate connection-oriented events such as connection_
finished .
This function provides a way to shed some load in order to reduce
the computational burden placed on the monitor.
Returns true upon success, false upon an error.

sub_bytes (s: string, start: count, n: count): string

Returns a copy of n bytes from the given string, starting at position
start. The beginning of a string corresponds to position 1.
If start is 0 or exceeds the length of the string, returns an empty
string.
If the string does not have n characters from start to its end, then
returns the characters from start to the end.

system (s: string): int

Chapter 6: Predefined Variables and Functions 82

Runs the given string as a sh command (via C’s system call).
Note: The command is run in the background with stdout redirected
to stderr.
Returns the return value from the system call. Note: This corre-
sponds to the status of backgrounding the given command, NOT to
the exit status of the command itself. A value of 127 corresponds
to a failure to execute sh, and -1 to an internal system failure.

to_lower (s: string): string

Returns a copy of the given string with the uppercase letters (as
indicated by isascii and isupper) folded to lowercase (via tolower).

to_net (a: addr): net

Returns the network prefix historically associated with the given
address. That is, if a’s leading octet is less than 128, then returns
<a>/8 ; if between 128 and 191, inclusive, then <a>/16 ; if between
192 and 223, then <a>/24 ; and, otherwise, <a>/32. See the discus-
sion of the type for more about network prefixes.
Generates a run-time error and returns 0.0.0.0 if the address is
IPv6.
Note: Such network prefixes have become obsolete with the advent of
CIDR; still, for some sites they prove useful because they correspond
to existing address allocations.
Compare with mask_addr.

to_upper s: string): string

Returns a copy of the given string with the lowercase letters (as
indicated by isascii and islower) folded to uppercase (via toupper).

6.2.1 Run-time errors for non-existing connections

Note that for all functions that take a conn_id argument except active-connection, Bro
generates a run-time error and returns false if the given connection does not exist.

6.2.2 Run-time errors for strings with NULs

While Bro allows NULs embedded within strings (See XXX), for many of the predefined
functions, their presence spells trouble, particularly when the string is being passed to a C
run-time function. The same holds for strings that are not NUL-terminated. Because Bro
string constants and values returned by Bro functions that construct strings such as fmt
and cat are all NUL-terminated, such strings will not ordinarily arise; but their presence
could indicate an attacker attempting to manipulate either a TCP endpoint, or the monitor
itself, into misinterpreting a string they’re sending.

In general, any of the functions above that are passed a string argument will check for
the presence of an embedded NUL or the lack of a terminating NUL. If either occurs, they
generate a run-time message, and the string is transformed into the value "<string-with-
NUL>".

There are three exceptions: clean, byte_len, and sub_bytes. These functions do not
complain about embedded NULs or lack of trailing NULs.

Chapter 6: Predefined Variables and Functions 83

6.2.3 Functions for manipulating strings

Fixme: Missing

6.2.4 Functions for manipulating time

Fixme: Missing

Chapter 7: Analyzers and Events 84

7 Analyzers and Events

In this chapter we detail the different analyzers that Bro provides. Some analyzers look
at traffic in fairly generic terms, such as at the level of TCP or UDP connections. Others
delve into the specifics of a particular application that is carried on top of TCP or UDP.

As we use the term here, analyzer primarily refers to Bro’s event engine. We use the term
script to refer to a set of event handlers (and related functions and variables) written in the
Bro language; module to refer to a script that serves primarily to provide utility (helper)
functions and variables, rather than event handlers; and handler to denote an event handler
written in the Bro language. Furthermore, the standard script is the script that comes with
the Bro distribution for handling the events generated by a particular analyzer.

Note: However, we also sometimes use analyzer to refer to the event handler that pro-
cesses events generated by the event engine.

We characterize the analyzers in terms of what events they generate, but don’t here go
into the details of how they generate the events (i.e., the nitty gritty C++ implementations
of the analyzers).

7.1 Activating an Analyzer

In general, Bro will only do the work associated with a particular analyzer if your policy
script defines one or more event handlers associated with the analyzer. For example, Bro
will instantiate an FTP analyzer only if your script defines an ftp_request or ftp_reply
handler. If it doesn’t, then when a new FTP connection begins, Bro will only instantiate
a generic TCP analyzer for it. This is an important point, because some analyzers can
require Bro to capture a large volume of traffic (See Section 7.1.2 [Filtering], page 84) and
perform a lot of computation; therefore, you need to have a way to trade off between the
type of analysis you do and the performance requirements it entails, so you can strike the
best balance for your particular monitoring needs.

Deficiency: While Bro attempts to instantiate an analyzer if you define a handler for
any of the events the analyzer generates, its method for doing so is incomplete: if you only
define an analyzer’s less mainstream handlers, Bro may fail to instantiate the analyzer.

7.1.1 Loading Analyzers

The simplest way to use an analyzer is to @load the standard script associated with the
analyzer. (See Section 10.14 [load directive], page 171 for a discussion of @load). However,
there’s nothing magic about these scripts; you can freely modify or write your own. The
only caveat is that some scripts @load other scripts, so the original version may wind up
being loaded even though you’ve also written your own version. Deficiency: It would be
useful to have a mechanism to fully override one script with another.

In this chapter we discuss each of the standard scripts as we discuss their associated
analyzers.

7.1.2 Filtering

Most analyzers require Bro to capture a particular type of network traffic. These traffic
flows can vary immensely in volume, so different analyzers can cost greatly differing amounts
in terms of performance.

Chapter 7: Analyzers and Events 85

Bro predefines two redefinable string variables that have special interpretations with
regard to filtering. (See Section 5.1.6 [Refinement], page 45 for a discussion of redefinable
variables.) capture_filter is a tcpdump filter that tells Bro what traffic it should capture.
restrict_filter limits what traffic Bro captures. The tcpdump filter Bro uses is:

(capture filter) and (restrict filter)
So, for example, if you specify:

redef capture_filter = "port http";
redef restrict_filter = "net 128.3";

then the corresponding tcpdump filter will be:
(port http) and (net 128.3)

which will capture all TCP port 80 traffic that has either a source or destination address
belonging to the 128.3 network (i.e., 128.3/16).

If you do not define capture_filter, then its value is set to “tcp or udp”; if you do
not define restrict_filter, then no restriction is in effect.

You may have noticed that other than their default values, the definitions of capture_
filter and restrict_filter are symmetric. They differ only in the convention of how
they are used. Usually, you either don’t define a value for restrict_filter at all, or define
it just once, using it to specify a restriction that holds across your environment. For example,
either to confine packet capture to a subset of the traffic (like the "net 128.3" example
above), or to exclude a particular traffic source ("not host syn-flood.magnet.com") or
both of these ("net 128.3 and not host syn-flood.magnet.com").

For capture_filter, on the other hand, you usually don’t define a single value, but
instead refine it one or more times using the += initializer. (See Section 5.1.6 [Refinement],
page 45 for a discussion of refining a variable’s initial value.) The way capture_filter’s
refinement is defined, it constructs a filter that is the “or” of each of its refinements. So,
for example, if at one point in your script you have:

redef capture_filter += "port ftp";

and at another:
redef capture_filter += "udp port 53";

and at a third:
redef capture_filter += "len >= 512 and len <= 1024";

then the resulting capture_filter will be:
(port ftp) or (udp port 53) or (len >= 512 and len <= 1024)

(except there will be more parentheses, which don’t actually affect the interpretation of
the filter; see Section 5.1.6 [Refinement], page 45 for the details of how the refinement is
done, and why it leads to the extra parentheses).

restrict_filter has the same refinement mechanism, the “or”ing together of the dif-
ferent refinement additions, though, as mentioned above, it is not usually refined.

As you add analyzers, the final tcpdump filter can become quite complicated. You can
use the predefined print-filter script shown below to print out the filter. This script
handles the bro_init event and exits after printing the filter. Its intended use is that you
can add it to the Bro command line (“bro my-own-script print-filter”) when you want
to see what filter the script my-own-script winds up using.

Chapter 7: Analyzers and Events 86

event bro_init()
{
if (restrict_filter == "" && capture_filter == "")

print "tcp or not tcp"; # Capture everything.

else if (restrict_filter == "")
print capture_filter;

else if (capture_filter == "")
print restrict_filter;

else
print fmt("(%s) and (%s)", capture_filter, restrict_filter);

exit();
}

In the example above, print_filter prints out the tcpdump filter your Bro script would
use and then exits.

There are two particular uses for print-filter. The first is to debug filtering problems.
Unfortunately, Bro sometimes uses sufficiently complicated expressions that they tickle bugs
in tcpdump’s optimizer. You can take the filter printed out for your script and try running
it through tcpdump by hand, and then also try using tcpdump’s -O option to see if turning
off the optimizer fixes the problem.

The second use is to provide a shadow backup to Bro: that is, a version of tcpdump
running either on the same machine or a separate machine that uses the same network
filter as Bro. While tcpdump can’t perform any analysis of the traffic, the shadow guards
against the possibility of Bro crashing, because if it does, you will still have a record of the
subsequent network traffic which you can run through Bro for post-analysis.

7.2 General Processing Events

Bro provides the following events relating to its overall processing:

‘bro_init ()’
is generated when Bro first starts up. In particular, after Bro has initialized the
network (or initialized to read from a save file) and executed any initializations
and global statements, and just before Bro begins to read packets from the
network input source(s).

‘net_done (t: time)’
generated when Bro has finished reading from the network, due to either having
exhausted reading the save file(s), or having received a terminating signal (See
Section 7.2 [General Processing Events], page 86). Deficiency: This event is
generated on a terminating signal even if Bro is not reading network traffic. t
gives the time at which network processing finished.

This event is generated before bro_done. Note: If Bro terminates due to an
invocation of exit, then this event is not generated.

Chapter 7: Analyzers and Events 87

‘bro_done ()’
generated when Bro is about to terminate, either due to having exhausted
reading the save file(s), receiving a terminating signal (See Section 7.2 [General
Processing Events], page 86), or because Bro was run without the network input
source and has finished executing any global statements .
This event is generated after net_done. If you have cleanup that only needs to
be done when processing network traffic, it likely is better done using net_done.
Note: If Bro terminates due to an invocation of exit, then this event is not
generated.

‘bro_signal (signal: count)’
generated when Bro receives a signal. Currently, the signals Bro handles are
SIGTERM, SIGINT, and SIGHUP.
Receiving either of the first two terminates Bro, though if Bro is in the middle
of processing a set of events, it first finishes with them before shutting down.
The shutdown leads to invocations of net_done and bro_done, in that order.
Deficiency: In this case, Bro fails to invoke bro_signal, clearly a bug.
Upon receiving SIGHUP, Bro invokes flush_all (in addition to your handler,
if any).

‘net_stats_update (t: time, ns: net_stats)’
This event includes two arguments, t, the time at which the event was gener-
ated, and ns, a net_stats record, as defined in the example below. Regarding
this second parameter, the pkts_recvd field gives the total number of pack-
ets accepted by the packet filter so far during this execution of Bro; pkts_
dropped gives the total number of packets reported dropped by the kernel; and
interface_drops gives the total number of packets reported by the kernel as
having been dropped by the network interface.
Note: An important consideration is that, as shown by experience, the kernel’s
reporting of these statistics is not always accurate. In particular, the $pkts_
dropped statistic is sometimes missing actual packet drops, and some operating
systems do not support the interface_drops statistic at all. See the ack_
above_hole event for an alternate way to detect if packets are being dropped.

type net_stats: record {
All counts are cumulative.
pkts_recvd: count; # Number of packets received so far.
pkts_dropped: count; # Number of packets *reported* dropped.
interface_drops: count; # Number of drops reported by interface(s).

};

7.3 Generic Connection Analysis

The conn analyzer performs generic connection analysis: connection start time, duration,
sizes, hosts, and the like. You don’t in general load analyzer directly, but instead do so
implicitly by loading the tcp, udp, or icmp analyzers. Consequently, analyzer doesn’t load
a capture_filter value by itself, but instead uses whatever is set up by these more specific
analyzers.

Chapter 7: Analyzers and Events 88

conn analyzes a number of events related to connections beginning or ending. We first
describe the connection record data type that keeps track of the state associated with each
connection (See Section 7.3.1 [connection record], page 88), and then we detail the events in
Section 7.3.3 [Generic TCP connection events], page 90. The main output of its analysis are
one-line connection summaries, which we describe in Section 7.3.6 [Connection summaries],
page 93, and in Section 7.3.7 [Connection functions], page 95 we give an overview of the
different callable functions provided by conn.

conn also loads three other Bro modules: the hot and scan analyzers, and the port_name
utility module.

7.3.1 The connection record
type conn_id: record {

orig_h: addr; # Address of originating host.
orig_p: port; # Port used by originator.
resp_h: addr; # Address of responding host.
resp_p: port; # Port used by responder.

};

type endpoint: record {
size: count; # Bytes sent by this endpoint so far.
state: count; # The endpoint’s current state.

};

type connection: record {
id: conn_id; # Originator/responder addresses/ports.
orig: endpoint; # Endpoint info for originator.
resp: endpoint; # Endpoint info for responder.
start_time: time; # When the connection began.
duration: interval; # How long it was active (or has been so far).
service: string; # The service we associate with it (e.g., "http").
addl: string; # Additional information associated with it.
hot: count; # How many times we’ve marked it as sensitive.

};

A connection record record holds the state associated with a connection, as shown in
the example above. Its first field, id, is defined in terms of the conn id record, which has
the following fields:

‘orig_h’ The IP address of the host that originated (initiated) the connection. In
“client/server” terminology, this is the “client.”

‘orig_p’ The TCP or UDP port used by the connection originator (client). For ICMP
“connections”, it is set to 0 Section 7.25 [icmp Analyzer], page 159.

‘resp_h’ The IP address of the host that responded (received) the connection. In
“client/server” terminology, this is the “server.”

‘resp_p’ The TCP or UDP port used by the connection responder (server). For ICMP
“connections”, it is set to 0 Section 7.25 [icmp Analyzer], page 159.

Chapter 7: Analyzers and Events 89

The orig and resp fields of a connection record both hold endpoint record values,
which consist of the following fields:

‘size’ How many bytes the given endpoint has transmitted so far. Note that for some
types of filtering, the size will be zero until the connection terminates, because
the nature of the filtering is to discard the connection’s intermediary packets
and only capture its start/stop packets.

‘state’ The current state the endpoint is in with respect to the connection. The ta-
ble below defines the different possible states for TCP and UDP connections.
Deficiency:The states are currently defined as count, but should instead be an
enumerated type; but Bro does not yet support enumerated types.
Note: UDP “connections” do not have a well-defined structure, so the states for
them are quite simplistic. See Section 7.3.2 [Definitions of connections], page 90
for further discussion.

The remaining fields in a connection record are:

‘start_time’
The time at which the first packet associated with this connection was seen.

‘duration ’
How long the connection lasted, or, if it is still active, how long since it began.

‘service’ The name of the service associated with the connection. For example, if
idresp_p is tcp/80, then the service will be "http". Usually, this map-
ping is provided by the global variable, perhaps via the endpoint_id function;
but the service does not always directly correspond to idresp_p, which is
why it’s a separate field. In particular, an FTP data connection can have a
service of "ftp-data" even though its idresp_p is something other than
tcp/20 (which is not consistently used by FTP servers).
If the name of the service has not yet been determined, then this field is set to
an empty string.

‘addl’ Additional information associated with the connection. For example, for a login
connection, this is the username associated with the login.
Deficiency: A significant deficiency associated with the addl field is that it is
simply a string without any further structure. In practice, this has proven
too restrictive. For example, we may well want to associate an unambiguous
username with a login session, and also keep track of the names associated with
failed login attempts. (See the login analyzer for an example of how this is
implemented presently.) What’s needed is a notion of union types which can
then take on a variety of values in a type-safe manner.
If no additional information is yet associated with this connection, then this
field is set to an empty string.

‘hot’ How many times this connection has been marked as potentially sensitive or
reflecting a break-in. The default value of 0 means that so far the connection
has not been regarded as “hot”.
Note: Bro does not presently make fine-grained use of this field; the standard
scripts log connections with a non-zero hot field, and do not in general log those

Chapter 7: Analyzers and Events 90

that do not, though there are exceptions. In particular, the hot field is not
rigorously maintained as an indicator of trouble; it instead is used loosely as an
indicator of particular types of trouble (access to sensitive hosts or usernames).

7.3.2 Definitions of connections

Connections for TCP are well-defined, because establishing and terminating a connection
plays a central part of the TCP protocol. For UDP and ICMP, however, the notion is much
looser.

For UDP, a connection begins when host A sends a packet to host B for the first time,
B never having sent anything to A. This transmission is termed a request, even if in fact
the application protocol being used is not based on requests and replies. If B sends a
packet back, then that packet is termed a reply. Each packet A or B sends is another
request or reply. Deficiency: There is presently no mechanism by which generic (non-
RPC) UDP connections are terminated; Bro holds the state indefinitely. There should
probably be a generic timeout for UDP connections that don’t correspond to some higher-level
protocol (such as RPC), and a user-accessible function to mark connections with particular
timeouts.

For ICMP, Bro likewise creates a connection the first time it sees an ICMP packet from
A to B, even if B previously sent a packet to A, because that earlier packet would have
been for a different transport connection than the ICMP itself—the ICMP will likely refer
to that connection, but it itself is not part of the connection. For simplicity, this holds
even for ICMP ECHOs and ECHO REPLYs; if you want to pair them up, you need to do
so explicitly in the policy script. Deficiency: As with UDP, Bro does not time out ICMP
connections.

7.3.3 Generic TCP connection events

There are a number of generic events associated with TCP connections, all of which have a
single connection record as their argument:

‘new_connection’
Generated whenever state for a new (TCP) connection is instantiated.
Note: Handling this event is potentially expensive. For example, during a SYN
flooding attack, every spoofed SYN packet will lead to a new new_connection
event.

‘connection_established’
Generated when a connection has become established, i.e., both participating
endpoints have agreed to open the connection.

‘connection_attempt’
Generated when the originator (client) has unsuccessfully attempted to estab-
lish a connection. “Unsuccessful” is defined as at least ATTEMPT_INTERVAL
seconds having elapsed since the client first sent a connection establishment
packet to the responder (server), where ATTEMPT_INTERVAL is an internal Bro
variable which is presently set to 300 seconds. Deficiency:This variable should
be user-settable. If you want to immediately detect that a client is attempting
to connect to a server, regardless of whether it may soon succeed, then you
want to handle the new_connection event instead.

Chapter 7: Analyzers and Events 91

Note: Handling this event is potentially expensive. For example, during a SYN
flooding attack, every spoofed SYN packet will lead to a new connection_
attempt event, albeit delayed by ATTEMPT_INTERVAL.

‘partial_connection’
Generated when both connection endpoints enter the TCP_PARTIAL state This
means that we have seen traffic generated by each endpoint, but the activity did
not begin with the usual connection establishment. Deficiency:For complete-
ness, Bro’s event engine should generate another form of partial_connection
event when a single endpoint becomes active (see new_connection below). This
hasn’t been implemented because our experience is network traffic often contains
a great deal of “crud”, which would lead to a large number of these really-partial
events. However, by not providing the event handler, we miss an opportunity
to detect certain forms of stealth scans until they begin to elicit some form of
reply.

State Meaning
TCP_INACTIVE The endpoint has not sent any traffic.
TCP_SYN_SENT It has sent a SYN to initiated a connection.
TCP_SYN_ACK_SENT It has sent a SYN ACK to respond to a connection

request.
TCP_PARTIAL The endpoint has been active, but we did not see the

beginning of the connection.
TCP_ESTABLISHED The two endpoints have established a connection.
TCP_CLOSED The endpoint has sent a FIN in order to close its end

of the connection.
TCP_RESET The endpoint has sent a RST to abruptly terminate

the connection.
UDP_INACTIVE The endpoint has not sent any traffic.
UDP_ACTIVE The endpoint has sent some traffic.

Table 7.1: TCP and UDP connection states, as stored in an endpoint record

‘connection_finished’
Generated when a connection has gracefully closed.

‘connection_rejected’
Generated when a server rejects a connection attempt by a client.

Note: This event is only generated as the client attempts to establish a con-
nection. If the server instead accepts the connection and then later aborts
it, a connection_reset event is generated (see below). This can happen, for
example, due to use of TCP Wrappers.

Note: Per the discussion above, a client attempting to connect to a server
will result in one of connection_attempt, connection_established, or
connection_rejected; they are mutually exclusive.

Chapter 7: Analyzers and Events 92

‘connection_half_finished ’
Generated when Bro sees one endpoint of a connection attempt to gracefully
close the connection, but the other endpoint is in the TCP_INACTIVE state. This
can happen due to split routing, in which Bro only sees one side of a connection.

‘connection_reset’
Generated when one endpoint of an established connection terminates the con-
nection abruptly by sending a TCP RST packet.

‘connection_partial_close ’
Generated when a previously inactive endpoint attempts to close a connection
via a normal FIN handshake or an abort RST sequence. When it sends one of
these packets, Bro waits PARTIAL_CLOSE_INTERVAL (an internal Bro variable
set to 10 seconds) prior to generating the event, to give the other endpoint a
chance to close the connection normally.

‘connection_pending’
Generated for each still-open connection when Bro terminates.

7.3.4 The tcp analyzer

The general tcp analyzer lets you specify that you’re interested in generic connection anal-
ysis for TCP. It simply @load’s conn and adds the following to :

tcp[13] & 0x7 != 0

which instructs Bro to capture all TCP SYN, FIN and RST packets; that is, the control
packets that delineate the beginning (SYN) and end (FIN) or abnormal termination (RST)
of a connection.

7.3.5 The udp analyzer

The general udp analyzer lets you specify that you’re interested in generic connection anal-
ysis for UDP. It @load’s both hot and conn, and defines two event handlers:

‘udp_request (u: connection)’
Invoked whenever a UDP packet is seen on the forward (request) direction of
a UDP connection. See Section 7.3.2 [Definitions of connections], page 90 for a
discussion of how Bro defines UDP connections.
The analyzer invokes check_hot with a mode of CONN_ATTEMPTED and then
record_connections to generate a connection summary (necessary because
Bro does not time out UDP connections, and hence cannot generate a
connection-attempt-failed event).

‘udp_reply (u: connection)’
Invoked whenever a UDP packet is seen on the reverse (reply) direction of a
UDP connection. See Section 7.3.2 [Definitions of connections], page 90 for a
discussion of how Bro defines UDP connections.
The analyzer invokes check_hot with a mode of CONN_ESTABLISHED and then
again with a mode of CONN_FINISHED to cover the general case that the reply
reflects that the connection was both established and is now complete. Finally,
it invokes to generate a connection summary.

Chapter 7: Analyzers and Events 93

Note: The standard script does not update capture_filter to capture UDP traffic.
Unlike for TCP, where there is a natural generic filter that captures only a subset of the
traffic, the only natural UDP filter would be simply to capture all UDP traffic, and that
can often be a huge load.

7.3.6 Connection summaries

The main output of conn is a one-line ASCII summary of each connection. By tradition,
these summaries are written to a file with the name red.tag, where tag uniquely identifies
the Bro session generating the logs. (“red” is mnemonic for “reduced,” from Bro’s roots in
performing protocol analysis for Internet traffic studies.)

The summaries are produced by the record_connection function, and have the follow-
ing format:

<start> <duration> <service> Bo Br Al Ar <state> <flags> <addl>

‘start ’ corresponds to the connection’s start time, as defined by start_time.

‘duration ’
gives the connection’s duration, as defined by duration.

‘service ’ is the connection’s service, as defined by service.

‘Bo, Br’ give the number of bytes sent by the originator and responder, respectively.
These correspond to the size fields of the corresponding endpoint records.

‘Al, Ar’ correspond to the local and remote addresses that participated in the connec-
tion, respectively. The notion of which addresses are local is controlled by the
global variable, if refined from its default value of empty. If local_nets has not
been refined, then Al is the connection responder and A {r} is the connection
originator.

Note: The format and defaults for Al and Ar are unintuitive; they reflect the
use of Bro’s predecessor for analyzing Internet traffic patterns, and have not
been changed so as to maintain compatibility with old, archived connection
summaries.

‘state ’ reflects the state of the connection at the time the summary was written (which
is usually either when the connection terminated, or when Bro terminated). The
different states are summarized in the table below. The ASCII Name given in the
Table is what appears in the red file; it is returned by the function. The Symbol
is used when generating human-readable versions of the file—see hot_report.

For UDP connections, the analyzer reports connections for which both end-
points have been active as SF; those for which just the originator was active as
S0; those for which just the responder was active as SHR; and those for which
neither was active as OTH (this latter shouldn’t happen!).

‘flags ’ reports a set of additional binary state associated with the connection:

‘L’ indicates that the connection was initiated locally, i.e., the host
corresponding to Al initiated the connection. If L is missing, then
the host corresponding to Ar initiated the connection.

Chapter 7: Analyzers and Events 94

‘U’ indicates the connection involved one of the networks listed in the
variable. The use of “U” for this indication (rather than “N”, say)
is historical, as for the most part is the whole notion of “neighbor
network.” Note that connection can have both L and U set (see
next item).

‘X’ is used to indicate that neither the “L” or “U” flags is associated
with this connection. An explicit negative indication is needed to
disambiguate the flags field from the subsequent addl field.

‘addl ’ lists additional information associated with the connection, i.e., as defined by .

Putting all of this together, here is an example of a red connection summary:

931803523.006848 54.3776 http 7320 38891 206.132.179.35
128.32.162.134 RSTO X %103

The connection began at timestamp 931803523.006848 (18:18:43 hours GMT on July 12,
1999; see the cf utility for how to determine this) and lasted 54.3776 seconds. The service
was HTTP (presuambly; this conclusion is based just on the responder’s use of port 80/tcp).
The originator sent 7,320 bytes, and the responder sent 38,891 bytes. Because the “L” flag
is absent, the connection was initiated by host 128.32.162.134, and the responding host was
206.132.179.35. When the summary was written, the connection was in the “RSTO” state,
i.e., after establishing the connection and transferring data, the originator had terminated
it with a RST (this is unfortunately common for Web clients). The connection had neither
the L or U flags associated with it, and there was additional information, summarized by
the string “%103” (see the http analyzer for an explanation of this information).

Chapter 7: Analyzers and Events 95

Symbol Name Meaning
} S0 Connection attempt seen, no reply.
> S1 Connection established, not terminated.
> SF Normal establishment and termination. Note that

this is the same symbol as for state S1. You can tell
the two apart because for S1 there will not be any
byte counts in the summary, while for SF there will
be.

[REJ Connection attempt rejected.
}2 S2 Connection established and close attempt by origi-

nator seen (but no reply from responder).
}3 S3 Connection established and close attempt by respon-

der seen (but no reply from originator).
>] RSTO Connection established, originator aborted (sent a

RST).
>[RSTR Established, responder aborted.
}] RSTOS0 Originator sent a SYN followed by a RST, we never

saw a SYN ACK from the responder.
<[RSTRH Responder sent a SYN ACK followed by a RST, we

never saw a SYN from the (purported) originator.
>h SH Originator sent a SYN followed by a FIN, we never

saw a SYN ACK fromthe responder (hence the con-
nection was "half" open).

<h SHR Responder sent a SYN ACK followed by a FIN, we
never saw a SYN from the originator.

?>? OTH No SYN seen, just midstream traffic (a "partial con-
nection" that was not later closed).

Table 7.2: Summaries of connection states, as reported in red files

7.3.7 Connection functions

We finish our discussion of generic connection analysis with a brief summary of the different
Bro functions provided by the conn analyzer:

‘conn_size e: endpoint, is_tcp: bool): string’
returns a string giving either the number of bytes the endpoint sent during the
given connection, or "?" if from the connection state this can’t be determined.
The is_tcp parameter is needed so that the function can inspect the endpoint’s
state to determine whether the connection was closed.

‘conn_state (c: connection, is_tcp: bool): string’
returns the name associated with the connection’s state, as given in the above
table.

‘determine_service c: connection): bool’
sets the service field of the given connection, using port_names. If you are
using the ftp analyzer, then it knows about FTP data connections and maps
them to port_names[20/tcp], i.e., "ftp-data".

Chapter 7: Analyzers and Events 96

‘full_id_string (c: connection): string’
returns a string identifying the connection in one of the two following forms.
If the connection is in state S0, S1, or REJ, then no data has been transferred,
and the format is:

Ao <state> Ar/<service> <addl>
where Ao is the IP address of the originator (idorig_h), state is as given
in the Symbol column of the above table. Ar is the IP address of the respon-
der (idresp_h), service gives the application service ($service) as set by
determine_service, and addl is the contents of the $addl field (which may be
an empty string).
Note that the ephemeral port used by the originator is not reported. If you
want to display it, use id_string.
So, for example:

128.3.6.55 > 131.243.88.10/telnet "luser"

identifies a connection originated by 128.3.6.55 to 131.243.88.10’s Telnet
server, for which the additional associated information is "luser", the user-
name successfully used during the authentication dialog as determined by the
analyzer. From the table above we see that the connection must be in state S1,
as that’s the only state of S0, S1, or REJ that has a > symbol. (We can tell it’s
not in state SF because the format used for that state differs—see below.)
For connections in other states, Bro has size and duration information available,
and the format returned by full_id_string is:

Ao Sob <state> Ar/<service> Srb Ds <addl>
where Ao, Ar, state, service, and addl are as before, So and Sr give the number
of bytes transmitted so far by the originator to the responder and vice versa, and
D gives the duration of the connection in seconds (reported with one decimal
place) so far.
An example of this second format is:

128.3.6.55 63b > 131.243.88.10/telnet 391b 39.1s "luser"

which reflects the same connection as before, but now 128.3.6.55 has transmit-
ted 63 bytes to 131.243.88.10, which has transmitted 391 bytes in response,
and the connection has been active for 39.1 seconds. The “>” indicates that
the connection is in state SF.

‘id_string (id: conn_id): string’
returns a string identifying the connection by its address/port quadruple. Re-
gardless of the connection’s state, the format is:

Ao/Po > Ar/Pr

where Ao and Ar are the originator and responder addresses, respectively, and
Po and Pr are representations of the originator and responder ports as returned
by the port-name module, i.e., either or a string like “http” for a well-known
port such as 80/tcp.
An example:

128.3.6.55/2244 > 131.243.88.10/telnet

Chapter 7: Analyzers and Events 97

Note, id_string is implemented using a pair of calls to endpoint_id.
Deficiency:It would be convenient to have a form of id_string that can
incorporate a notion of directionality, for example 128.3.6.55/2244 <
131.243.88.10/telnet to indicate the same connection as before, but
referring specifically to the flow from responder to originator in that connection
(indicated by using “<” instead of “>”).

‘log_hot_conn (c: connection)’
logs a real-time alert of the form:

hot: <connection-id>
where connection-id is the format returned by full_id_string. log_hot_
conn keeps track of which connections it has logged and will not log the same
connection more than once.

‘record_connection (c: connection, disposition: string)’
Generates a connection summary to the ‘red’ file in the format described in
Section 7.3.6 [Connection summaries], page 93. If the connection’s hot field is
positive, then also logs the connection using log_hot_conn. The disposition
is a text description of the connection’s state, such as "attempt" or "half_
finished"; it is not presently used.

‘service_name (c: connection): string’
returns a string describing the service associated with the connection, computed
as follows. If the responder port (idresp_p), p, is well-known, that is, in the
port_names table, then p’s entry in the table is returned (such as "http" for
TCP port 80). Otherwise, for TCP connections, if the responder port is less
than 1024, then priv-p is returned, otherwise other-p . For UDP connections,
the corresponding service names are upriv-p and uother-p .

‘terminate_connection (c: connection)’
Attempts to terminate the given connection using the rst utility in the current
directory. It does not check to see whether the utility is actually present, so an
unaesthetic shell error will appear if the utility is not available.
rst terminates connections by forging RST packets. It is not presently dis-
tributed with Bro, due to its potential for disruptive use.
If Bro is reading a trace file rather than live network traffic, then terminate_
connection logs the rst invocation but does not actually invoke the utility. In
either case, it finishes by logging that the connection is being terminated.

7.4 Site-specific information

The site analyzer is not actually an analyzer but simply a set of global variables (and
Updateme: one function) used to define a site’s basic topological information.

7.4.1 Site variables

The site module defines the following variables, all redefinable:

‘local_nets set[net]’
Defines which net’s Bro should consider as reflecting a local address.

Chapter 7: Analyzers and Events 98

Default: empty.

‘local_16_nets set[net]’
Defines which /16 prefixes Bro should consider as reflecting a local address.
Deficiency:Bro currently is inconsistent regarding when it consults local_nets
versus local_16_nets, so you should ensure that this variable and the previous
one are always consistent.
Default: empty.

‘local_24_nets set[net]’
The same, but for /24 addresses.
Default: empty.

‘neighbor_nets set[net]’
Defines which net’s Bro should consider as reflecting a “neighbor.” Neighbors
networks can be treated specially in some policies, distinct from other non-local
addresses. In particular, will not drop connectivity to an address belonging to
a neighbor.
The notion is somewhat historical, as is the use of “U” to mark neighbors in
connection summaries (See Section 7.3.6 [Connection summaries], page 93).
Default: empty.

‘neighbor_16_nets set[addr]’
Defines which /16 addresses Bro should consider as reflecting a neighbor; the
only use of this variable in the standard scripts is that a scan originating from
an address with one of these prefixes will not be dropped . Deficiency:The name
is poorly chosen and should be changed to better reflect this use. Deficiency:In
addition, this variable should be kept consistent with neighbor_nets, until the
fine day when the processing is rectified to only use one variable.
Default: empty.

‘neighbor_24_nets set[net]’
The same, but for /24 addresses.
Default: empty.

7.4.2 Site-specific functions

Currently, the site module only defines one function:

‘is_local_addr (a: addr): bool’
returns true if the given address belongs to one of the “local” networks, false
otherwise. Updateme: Currently, the test is made by masking the address to
/16 and /24 and comparing it to local_16_nets and local_24_nets.

7.5 The hot Analyzer

The standard hot script defines policy relating to fairly generic notions of allowed and
prohibited connections. It defines a number of variables that you will need to refine to
customize your site’s policies. It also provides two functions for checking connections against
the policies, which can be used by other of the standard scripts.

Chapter 7: Analyzers and Events 99

7.5.1 hot variables

The standard hot script defines the following variables, all redefinable:

‘same_local_net_is_spoof : bool’
If true, then a connection with a local originator address and a local responder
address is considered by to have been spoofed. Deficiency:The name is poorly
chosen (and may be changed in the future) to something more accurate like
both_local_nets_is_spoof.
In general, you want to use true for a Bro that is monitoring Internet access
links (DMZs) and false for internal monitors.
Default: F.

‘allow_spoof_services : set[port]’
Defines a set of services (responder ports) for which Bro should not generate
alerts if it sees apparent spoofed traffic.
Default: 110/tcp (POP version 3; RFC-1939). This default was chosen be-
cause in our experience one common form of benign spoof is an off-site laptop
attempting to read mail while still configured to use its on-site address.

‘allow_pairs : set[addr, addr]’
Defines pairs of source and destination addresses for which the source is allowed
to connect to the destination. The intent with this variable is that the source
or destination address will be a sensitive host (such as defined with host_src
or host_dsts), for which this particular access should be allowed.
Default: empty.

‘allow_16_net_pairs : set[addr, addr]’
Defines pairs of source and destination /16 networks for which the source is
allowed to connect to the destination, similar to allow_pairs. Note: The
set is defined in terms of addr’s and not net’s. So, for example, rather than
specifying 128.32., which is a net constant, you’d use 128.32.0.0 (an addr
constant).
Default: empty.

‘hot_srcs : table[addr] of string’
Defines source addresses that should be considered “hot”. A successfully es-
tablished connection from such a source address is logged, unless one of the
access exception variables such as allow_pairs also matches the connection.
The value of the table gives an explanatory message as to why the source is
hot; for example, "known attacker site". Note: This value is not currently
used, though it aids in documenting the policy script.
Default: empty.
Example: redefining hot_srcs using

redef hot_srcs: table[addr] of string = {
[ph33r.the.eleet.com] = "script kideez",

};

would result in Bro alerting on any traffic coming ph33r.the.eleet.com.

Chapter 7: Analyzers and Events 100

‘hot_dsts : table[addr] of string’
Same as hot_srcs, except for destination addresses.
Default: empty.

‘hot_src_24nets : table[addr] of string’
Defines /24 source networks should be considered “hot,” similar to hot_srcs.
Deficiency:Other network masks, particularly /16, should be provided.
Default: empty.
Example: redefining hot_src_24nets using

redef hot_src_24nets: table[addr] of string = {
[198.81.129.0] = "CIA incoming!",

};

would result in Bro alerting on any traffic coming from the 198.81.129/24
network.

‘hot_dst_24nets : table[addr] of string’
same as hot_src_24nets, except for destination networks.
Default: empty.

‘allow_services : set[port]’
Defines a set of services that are always allowed, regardless of whether the
source or destination address is “hot.”
Default: ssh, http, gopher ident, smtp, 20/tcp (FTP data).
Note: The defaults are a bit unusual. They are intended for a quite open site
with many services.

‘allow_services_to : set[addr, port]’
Defines a set of services that are always allowed if the server is the given host,
regardless of whether the source or destination address is “hot.”
Default: empty.
Example: redefining allow_services_to using

redef allow_services_to: set[addr, port] += {
[ns.mydomain.com, [domain, 123/tcp]],

} &redef;

would result in Bro not alerting on any TCP DNS or NTP traffic heading to
ns.mydomain.com. You might add this if ns.mydomain.com is also in hot_dsts,
because in general you want to consider any access (other than DNS or NTP)
as sensitive.

‘allow_services_pairs : set[addr, addr, port]’
Defines a set of services that are always allowed if the connection originator is
the first address and the responder (server) the second address.
Default: empty.
Example: redefining allow_services_pairs using

redef allow_services_pairs: set[addr, addr, port] += {
[ns2.mydomain.com, ns.mydomain.com, [domain, 123/tcp]],

Chapter 7: Analyzers and Events 101

} &redef;

would result in Bro not alerting on any TCP DNS or NTP traffic initiated from
ns2.mydomain.com to ns.mydomain.com.

‘flag_successful_service : table[port] of string’
The opposite of allow_services. Defines a set of services that should always
be flagged as sensitive, even if neither the source nor the destination address
is “hot.” The string value in the table gives the reason for why the service is
considered hot. Note: Bro currently does not use these explanatory messages.
Default: 31337/tcp (a popular backdoor because in stylized lettering it spells
ELEET) and 2766/tcp (the Solaris listen service, in our experience rarely used
legitimately in wide-area traffic).
Note: Bro can flag these services erroneously when a server happens to run a
different service on the same port. For example, if you’re not running the FTP
analyzer, then Bro won’t know that FTP data connections using ephemeral ports
in fact belong to legitimate FTP traffic, and will flag any that coincide with
these services. A related problem arises when a user has configured their SSH
access to tunnel FTP control channels through the FTP connection, but not the
corresponding data connections (so they don’t pay the expense of encrypting the
data transfers), so again Bro can’t recognize that the ephemeral ports used for
the data connections does not reflect the presumed sensitive service.
Example: redefining flag_successful_service using

redef flag_successful_service: table[port] of string += {
[1524/tcp] = "popular backdoor",

};

would result in Bro also alerting on any successful connection to a server running
on TCP port 1524.

‘flag_successful_inbound_service : table[port] of string’
The same as flag_successful_service, except only applies to connections
with a remote initiator and a local responder (determined by finding the re-
sponder address in local_nets).
Default: 1524/tcp (ingreslock, a popular backdoor because an attacker can
place an entry for the backdoor in /etc/inetd.conf using a service name rather
than a raw port number, and hence more likely to appear legitimate to casual
inspection). Note: There’s no compelling reason why ingreslock is in this
table rather than the more general flag_successful_service, though it does
tend to result in a few more false hits than the others, presumably because it’s
a lower port number, and hence more likely on some systems to be chosen for
an ephemeral port.
Note: Symmetry would call for flag_successful_outbound_service. This
hasn’t been implemented in Bro yet simply because the Bro development site
has a threat model structured primarily around external threats.

‘terminate_successful_inbound_service : table[port] of string’
The same as flag_successful_inbound_service, except invokes in an at-
tempt to terminate the connection.

Chapter 7: Analyzers and Events 102

Default: empty.

Note: As for flag_successful_inbound_service, it would be symmetric to
have terminate_successful_outbound_service, and also to have a more gen-
eral terminate_successful_service.

flag_rejected_service table[port] of string Similar to flag_
successful_service, except applies to connections that a server rejects.
For example, you could detect a particular, failed Linux mountd attack by
adding 10752/tcp to this table, since that happens to be the port used by
the commonly available version of the exploit for its backdoor if the attack
succeeds. Note: You would of course likely also want to put 10752/tcp in
flag_successful_service; or put the entire flag_rejected_service table
into flag_successful_service, as discussed in Section 10.16 [Inserting tables
into tables], page 171.

Default: none.

Deficiency:It might make sense to have flag_attempted_service, which
doesn’t require that a server actively reject the connection, but Bro doesn’t
currently have this.

7.5.2 hot functions

The hot module defines two functions for external use:

‘check_spoof (c: connection): bool’
checks the originator and responder addresses of the given connection to de-
termine if they are both local (and the connection is not explicitly allowed in
allow_spoof_services). If so, and if same_local_net_is_spoof is true, then
marks the connection as “hot”.

The function also checks for a specific denial of service attack, the “Land”
attack, in which the addresses are the same and so are the ports. If so, then it
generates a event with a name of "Land_attack". It makes this check even if
is false.

Returns: true if the connection is now hot (or was upon entry), false otherwise.

‘check_hot (c: connection, state: count): bool’
checks the given connection against the various policy variables discussed above,
and bumps the connection’s hot field if it matches the policies for being sen-
sitive, and does not match the various exceptions. It also uses check_spoof
to see if the connection reflects a possible spoofing attack; and terminates the
connection if terminate_successful_service indicates so.

The caller indicates the connection’s state in the second parameter to the func-
tion, using one of the values given in the Table below. As noted in the Table,
the processing differs depending on the state.

Chapter 7: Analyzers and Events 103

State Meaning Tests
CONN_ATTEMPTED Connection attempted, no reply

seen. Note that you should also
use this value for scans with inde-
terminant state, such as possible
stealth scans. For example, con-
nection half_finished does this.

check_spoof

CONN_
ESTABLISHED

Connection established. Also used
for connections apparently estab-
lished, per partial_connection.

check_spoof, flag_
successful_service,
flag_successful_
inbound service,
allow_services_to,
terminate_successful
inbound_service

APPL_
ESTABLISHED

The connection has reached
application-layer establishment.
For example, for Telnet or
Rlogin, this is after the user has
authenticated.

allow_services_to,
allow_service_pairs,
allow_pairs,
allow_16_net_pairs,
hot_srcs, hot_dsts,
hot_src_24nets,
hot_dst_24nets

CONN_FINISHED The connection has finished, ei-
ther cleanly or abnormally (for ex-
ample, connection_reset.

Same as APPL_
ESTABLISHED, if the
connection exchanged
non-zero amounts of
data in both directions,
and if the service
wasnt one of the
ones that generates
APPL_ESTABLISHED

CONN_REJECTED The connection attempt was re-
jected by the server.

check_spoof, flag_
rejected_service

Table 7.3: Different connection states to use when calling check hot

In general, the pattern is to make one call when the connection is first seen,
either CONN_ATTEMPTED, CONN_ESTABLISHED, or CONN_REJECTED. If the applica-
tion is one for which connections should only be considered “established” after
a successful pre-exchange between originator and responder, then a subsequent
call is made with a state of APPL_ESTABLISHED. The idea here is to provide a
way to filter out what are in fact not really successful connections so that they
are not analyzed in terms of successful service. Finally, for services that don’t
use APPL_ESTABLISHED, a call is made instead when the connection finishes for
some reason, using state CONN_FINISHED. Note: This approach delays alerting
until the connection is over, which might be later than you want, in which case
you may need to edit check_hot to provide the desired functionality.

Chapter 7: Analyzers and Events 104

Returns: true if the connection is now hot (or was upon entry), false otherwise.

7.6 The scan Analyzer

The scan analyzer detects connection attempts to numerous machines (address scanning),
connection attempts to many different services on the same machine (port scanning), and
attempts to access many different accounts (password guessing). The basic methodology is
to use tables to keep track of the distinct addresses and ports to which a given host attempts
to connect, and to trigger alerts when either of these reaches a specified size. Deficiency:As
currently written, the analyzer will not detect distributed scans, i.e., when many sites are
used to probe individually just a few, but together a large number, of ports or addresses.

A powerful technique that Bro potentially provides is dropping border connectivity with
remote scanning sites, though you must supply the magic script to talk with your router and
effect the block. See drop_address below for a discussion of the interface provided. Note:
Naturally, providing this capability means you might become vulnerable to denial-of-service
attacks in which spoofed packets are used in an attempt to trigger a block of a site to which
you want to have access.

7.6.1 scan variables

In addition to internal variables for its bookkeeping, the analyzer provides the following
redefinable variables:

report_peer_scan : set[count] Generate a log message whenever a remote
host (as determined by is_local_address) has attempted to connect to the
given number of distinct hosts.
Default: { 100, 1000, 10000, }. So, for example, if a remote host attempts to
connect to 3,500 different local hosts, a report will be generated when it makes
the 100th attempt, and another when it makes the 1,000th attempt.

‘report_outbound_peer_scan : set[count]’
The same as report_peer_scan, except for connections initiated locally.
Default: { 1000, 10000, }.

‘possible_port_scan_thresh : count’
Initially, port scan detection is done based on how many different ports a given
host connects to, regardless of on which hosts. Once this threshold is reached,
however, then the analyzer begins tracking ports accessed per-server, which is
important for reducing false positives. Note: The reason this variable exists
is because it is very expensive to track per-server ports accessed for every ac-
tive host; this variable limits such tracking to only active hosts contacting a
significant number of different ports.
Default: 25.

‘report_accounts_tried : set[count]’
Whenever a remote host has attempted to access a number of local accounts
present in this set, generate a log message. Each distinct username/password
pair is considered a different access.
Default: { 25, 100, 500, }.

Chapter 7: Analyzers and Events 105

‘report_remote_accounts_tried : set[count]’
The same, except for access to remote accounts rather than local ones.
Default: { 100, 500, }.

‘skip_accounts_tried : set[addr]’
Do not do bookkeeping for account attempts for the given hosts.
Default: empty.

‘skip_outbound_services : set[port]’
Do not do outbound-scanning bookkeeping for connections involving the given
services.
Default: allow_services, ftp, addl_web (see next item).

‘addl_web : set[port]’
Additional ports that should be considered as Web traffic (and hence skipped
for outbound-scan bookkeeping).
Default: { 81/tcp, 443/tcp, 8000/tcp, 8001/tcp, 8080/tcp, }.

‘skip_scan_sources : set[addr]’
Hosts that are allowed to address-scan without complaint.
Default: scooter.pa-x.dec.com, scooter2.av.pa-x.dec.com (AltaVista
crawlers; you get the idea.)

‘skip_scan_nets_24 : set[addr, port]’
/24 networks that are allowed to address scan for the given port without com-
plaint.
Default: empty.

‘can_drop_connectivity : bool’
True if the Bro has the capability of dropping connectivity, per drop_address.
Default: false.

‘shut_down_scans : set[port]’
Scans of these ports trigger connectivity-dropping (if the Bro is capable of
dropping connectivity), unless shut_down_all_scans is defined (next item).
Default: empty.

‘shut_down_all_scans : bool’
Ignore shut_down_scans and simply drop all scans regardless of service.
Default: false.

‘shut_down_thresh : count’
Shut down connectivity after a host has scanned this many addresses.‘
Default: 100.

‘never_shut_down : set[addr]’
Purported scans from these addresses are never shut down.
Default: the root name servers (a.root-servers.net through m.root-
servers.net).

Chapter 7: Analyzers and Events 106

7.6.2 scan functions

The standard scan script provides the following functions:

‘drop_address (a: addr, msg: string)’
Drops external connectivity to the given address and logs a notification using
the given message.
Dropping connectivity requires all of the following to be true:
• can_drop_connectivity is true.
• The address is neither local nor a neighbor (See Section 7.4.1 [Site vari-

ables], page 97).
• The address is not in never_shut_down.

If these checks succeed, then the script simply attempts to invoke a shell script
drop-connectivity with a single argument, the IP address to block. It is up to
you to provide the script, using whatever interface to your router/firewall you
have available.
The function does not return a value.

‘check_scan (c: connection, established: bool, reverse: bool): bool’
Updates the analyzer’s internal bookkeeping on the basis of the new connection
c. If established is true, then the connection was successfully established,
otherwise not. If reverse is true, then the function should consider the origi-
nator/responder fields in the connection’s record as reversed. Note: This last is
needed for some unusual new connections that may reflect stealth scanning. For
example, when the event engine sees a SYN-ack without a corresponding SYN,
it instantiates a new connection with an assumption that the SYN-ack came
from the responder (and it missed the initial SYN either due to split routing
(See Section 10.9 [Split routing], page 171), a packet drop (See Section 10.13
[Packet drops], page 171), or Bro having started running after the initial SYN
was sent).
If the originating host’s activity matches the policy defined by the variables
above, then the analyzer logs this fact, and possibly attempts to drop connec-
tivity to the originating host. The function also schedules an event for 24 hours
in the future (or when Bro terminates) to generate a summary of the scanning
activity (so if the host continues scanning, you get a report on how many hosts
it wound up scanning). Deficiency:This time interval should be selectable.
Note: Purported scans of the FTP data port (20/tcp) or the ident service
(113/tcp) are never reported or dropped, as experience has shown they yield
too many false hits.
The function does not return a value.

7.6.3 scan event handlers

The standard scan script defines one event handler:

‘account_tried (c: connection, user: string, passwd: string)’
The given connection made an attempt to access the given username and pass-
word. Each distinct username/password pair is considered a new access. The

Chapter 7: Analyzers and Events 107

event handler generates a log message if the access matches the logging policy
outlined above.
Note: account_tried events are generated by login and ftp analyzers.

7.7 The port-name Module

The port-name utility module provides one redefinable variable and one callable function:

‘port_names : table[port] of string’
Maps TCP/UDP ports to names for the services associated with those ports.
For example, 80/tcp maps to "http". These names are used by the conn
analyzer when generating connection logs (See Section 7.3 [Generic Connection
Analysis], page 87).

‘endpoint_id (h: addr, p: port): string ’
Returns a printable form of the given address/port connection endpoint. The
format is either <address>/<service-name> or <address>/<port-number> de-
pending on whether the port appears in port_names.

7.8 The mt Module

The mt module is intended to provide a convenient way to run (almost) all of the analyzers.
It @load’s the following other modules and analyzers: log, dns, hot, port-name, frag,
tcp, scan, weird, finger, ident, ftp, login and portmapper. So you can run Bro
using bro -i in0 mt to have it analyze traffic on interface in0 using the above analyzers ; or
you can @load mt to load in the above analyzers.

Note: The mt analyzer doesn’t load http (because it can prove a very high load for many
sites) nor experimental analyzers such as stepping or backdoor.

7.9 The log Module

The log utility module redefines a single variable:

‘bro_log_file : file’
A special Bro variable used internally to specify a file where Bro should record
messages logged by log statements (as well as generating real-time alerts via
syslog).
Default: if the $BRO_ID environment variable is defined, then log.<$BRO_ID>,
otherwise bro.log.
Note: This value is slightly different than that returned by open_log_file,
because the latter would return log if $BRO_ID wasn’t defined, and that name
seems too easy to confuse with other uses.
See bro_log_file for further discussion.

If you do not include this module, then Bro records log messages to stderr.
Here is a sample definition of log_hook:

global msg_count: table[string] of count &default = 0;

event log_summary(msg: string)

Chapter 7: Analyzers and Events 108

{
log fmt("(%s) %d times", msg, msg_count[msg]);
}

function log_hook(msg: string): bool
{
if (++msg_count[msg] == 1)

First time we’ve seen this message - log it.
return T;

if (msg_count[msg] == 5)
We’ve seen it five times, enough to be worth
summarizing. Do so five minutes from now,
for whatever total we’ve seen by then.
schedule +5 min { log_summary(msg) };

return F;
}

You can also control Bro’s log processing by defining the special function log-hook. It
takes a single argument, msg: string, the message in a just-executed log statement, and
returns a boolean value: true if Bro should indeed log the message, false if not. The above
example shows a definition of log_hook that checks each log message to see whether the
same text has been logged before. It only logs the first instance of a message. If a message
appears at least five times, then it schedules a future log_summary event for 5 minutes in
the future; the purpose of this event is to summarize the total number of times the message
has appeared at that point in time.

7.10 The active Module

The active utility module provides a single, non-redefinable variable that holds information
about active connections:

‘active_conn : table[conn_id] of connection’
Indexed by a conn_id giving the originator/responder addresses/ports, returns
the connection’s connection record. As usual, accessing the table with a non-
existing index results in a run-time error, so you should first test for the presence
of the index using the in operator.
Default: empty.

This functionality is quite similar to that of the active_connection function, and De-
ficiency:arguably this module should be removed in favor of the function. It does, however,
provide a useful example of maintaining bookkeeping by defining additional handlers for
events that already have handlers elsewhere.

7.11 The demux Module

The demux utility module provides a single function:

Chapter 7: Analyzers and Events 109

‘demux_conn (id: conn_id, tag: string, otag: string, rtag: string): bool ’
Instructs Bro to write (“demultiplex”) the contents of the connection with the
given id to a pair of files whose names are constructed out of tag, otag, and
rtag, as follows.
The originator-to-responder direction of the connection goes into a file named:

<otag>.<tag>.<orig-addr>.<orig-port>-<resp-addr>.<resp-port>
and the other direction in:

<rtag>.<tag>.<resp-addr>.<resp-port>-<orig-addr>.<orig-port>
Accordingly, tag can be used to associate a unique label with the pair of files,
while otag and rtag provide distinct labels for the two directions.
If Bro is already demuxing the connection, or if the connection is not active,
then nothing happens, and the function returns false. Otherwise, it returns
true.

Bro places demuxed streams in a directory defined by the redefinable global demux_dir,
which defaults in the usual fashion to open_log_file("xscript").

Deficiency:Experience has shown that it would be highly convenient if Bro would demul-
tiplex the entire connection contents into the files, instead of just the part of the connection
seen subsequently after the call to demux_conn. One way to do this would be for demux_conn
to offset the contents in the file by the current stream position, and then to invoke a utility
tool that goes through the Bro output trace file and copies the contents up to the current
stream position to the front of the file. This utility tool might even be another instance of
Bro running with suitable arguments.

7.12 The dns Module

The dns module deals with Bro’s internal mapping of hostnames to/from IP addresses.
Deficiency: There is no DNS protocol analyzer available at present. Furthermore, Defi-
ciency: the lookup mechanisms discussed here are not available to the Bro script writer,
other than implicitly by using hostnames in lieu of addresses in variable initializations (see
Section 10.19 [Hostnames vs addresses], page 172).

The module’s function is to handle different events that can occur when Bro resolves
hostnames upon startup. Bro maintains its own cache of DNS information which persists
across invocations of Bro on the same machine and by the same user. The role of the cache
is to allow Bro to resolve hostnames even in the face of DNS outages; the philosophy is that
it’s better to use old addresses than none at all, and this helps harden Bro against attacks
in which the attacker causes DNS outages in order to prevent Bro from resolving particular
sensitive hostnames (e.g., hot_srcs). The cache is stored in the file “.bro-dns-cache” in
the user’s home directory. You can delete this file whenever you want, for example to purge
out old entries no longer needed, and Bro will recreate it next time it’s invoked using -P.

Currently, all of the event handlers are invoked upon comparing the results of a new
attempt to look up a name or an address versus the results obtained the last time Bro did
the lookup. When Bro looks up a name for the first time, no events are generated.

Also, Bro currently only looks up hostnames to map them to addresses. It does not
perform inverse lookups.

Chapter 7: Analyzers and Events 110

7.12.1 The dns_mapping record

All of the events handled by the module include at least one record of DNS mapping infor-
mation, defined by the dns_mapping type shown in the example below. The corresponding
fields are:

‘creation_time’
When the mapping was created.

‘req_host’
The hostname looked up, or an empty string if this was not a hostname lookup.

‘req_addr’
The address looked up (reverse lookup), or 0.0.0.0 if this was not an address
lookup.

‘valid’ True if an answer was received for a lookup (even if the answer was that the
request name or address does not exist in the DNS).

‘hostname’
The hostname answer in response to an address lookup, or the string "<none>"
if an answer was received but it indicated there was no PTR record for the
given address.

‘addrs’ A set of addresses in response to a hostname lookup. Empty if an answer was
received but it indicated that there was no A record for the given hostname.

type dns_mapping: record {
creation_time: time; # When the mapping was created.

req_host: string; # The hostname in the request, if any.
req_addr: addr; # The address in the request, if any.

valid: bool; # Whether we received an answer.
hostname: string; # The hostname in the answer, or "<none>".
addrs: set[addr]; # The addresses in the answer, if any.

};

7.12.2 dns variables

The modules provides one redefinable variable:

‘dns_interesting_changes : set[string]’
The different DNS events have names associated with them. If the name is
present in this set, then the event will be logged, otherwise not.
One exception to this list is that DNS changes involving the loopback address
127.0.0.1 are always considered log-worthy, since they may reflect DNS cor-
ruption.
Default: { "unverified", "old name", "new name", "mapping", }.

7.12.3 dns event handlers

The DNS module supplies the following event handlers:

Chapter 7: Analyzers and Events 111

‘dns_mapping_valid (dm: dns_mapping)’
The given request was looked up and it was identical to its previous mapping.

‘dns_mapping_unverified (dm: dns_mapping)’
The given request was looked up but no answer came back.

‘dns_mapping_new_name (dm: dns_mapping)’
In the past, the given address did not resolve to a hostname; this time, it did.

‘dns_mapping_lost_name (dm: dns_mapping)’
In the past, the given address resolved to a hostname; now, that name has
gone away. (An answer was received, but it stated that there is no hostname
corresponding to the given address.)

‘dns_mapping_name_changed (old_dm: dns_mapping, new_dm: dns_mapping)’
The name returned this time for the given address differs from the name re-
turned in the past.

‘dns_mapping_altered (dm: dns_mapping, old_addrs: set[addr], new_addrs:
set[addr])’

The addresses associated with the given hostname have changed. Those in old_
addrs used to be part of the set returned for the name, but aren’t any more;
while those in new_addrs didn’t used to be, but now are. There may also be
some unchanged addresses, which are those in dm$addrs but not in new_addrs.

7.13 The finger Analyzer

The finger analyzer processes traffic associated with the Finger service RFC-1288. Bro
instantiates a finger analyzer for any connection with service port 79/tcp (if you @load
the finger analyzer in your script, or define your own finger_request or finger_reply
handlers, of course).

The analyzer uses a capture filter of “port finger” (See: Section 7.1.2 [Filtering],
page 84).

In the past, attackers often used Finger requests to obtain information about a site’s
users, and sometimes to launch attacks of various forms (buffer overflows, in particular). In
our experience, exploitation of the service has greatly diminished over the past years (no
doubt in part to the service being increasingly turned off, or prohibited by firewalls). Now
it is only rarely associated with an attack.

7.13.1 finger variables

The standard script defines two redefinable variables:

‘hot_names : set[string]’
A list of usernames that should be considered sensitive (log-worthy) if included
in a Finger request.

Default: { "root", "lp", "uucp", "nuucp", "demos", "operator",
"sync", "guest", "visitor", }.

Chapter 7: Analyzers and Events 112

‘max_request_length : count’
The largest reasonable request size (used to flag possible buffer overflow at-
tacks). Bro marks a connection as “hot” if its request exceeds this length, and
truncates its logging of the request to this many bytes, followed by "...".
Default: 80.

7.13.2 finger event handlers

The standard script defines one event handler:

‘finger_request (c: connection, request: string, full: bool)’
Invoked upon connection c having made the request request. The full flag is
true if the request included the “long format” option (which the event engine
will have removed from the request).
The standard script flags long requests and truncates them as noted above, and
then checks whether the request is for a name in hot_names. It then formats the
request either by placing double quotation marks around it, or, if the request
was empty—indicating a request for information on all users—the request is
changed to the string ALL with no quotes around it.
If the originator already made a request, then this additional request is placed
in parentheses (though multiple requests violate the Finger protocol). If the
request was for the full format, then the text “(/W)” is appended to the
request. Finally, the request is appended to the connection’s field.

The event engine generates an additional event that the predefined finger script does
not handle:

‘finger_reply (c: connection, reply_line: string)’
Generated for each line of text sent in response to the originator’s request.

7.14 The frag Module

The frag utility module simply refines the capture filter (See: Section 7.1.2 [Filtering],
page 84) so that Bro will capture and reassemble IP fragments. Bro reassembles any frag-
ments it receives; but normally it doesn’t receive any, except the beginnings of TCP frag-
ments (see the tcp module), and UDP port 111 (per the portmapper module).

So, to make Bro do fragment reassembly, you simply use “load frag”. It effects this by
adding:

(ip[6:2] & 0x3fff != 0) and tcp

to the filter. The first part of this expression matches all IP fragments, while the second
restricts those matched to TCP traffic. We would like to use:

(ip[6:2] & 0x3fff != 0) and (tcp or udp port 111)

to also include portmapper fragments, but that won’t work—the port numbers will only
be present in the first fragment, so the packet filter won’t recognize the subsequent fragments
as belonging to a UDP port 111 packet, and will fail to capture them.

Note: Alternatively, we might be tempted to use “(tcp or udp)” and so capture all UDP
fragments, including port 111. This would work in principle, but in practice can capture
very high volumes of traffic due to NFS traffic, which can send all of its file data in UDP
fragments.

Chapter 7: Analyzers and Events 113

7.15 The hot-ids Module

The hot-ids module defines a number of redefinable variables that specify usernames Bro
should consider sensitive:

‘forbidden_ids set[string]’
lists usernames that should never be used. If Bro detects use of one, it will
attempt to terminate the corresponding connection.

Default: { "uucp", "daemon", "rewt", "nuucp", "EZsetup", "OutOfBox",
"4Dgifts", "ezsetup", "outofbox", "4dgifts", "sgiweb", }. All of these
correspond to accounts that some systems have enabled by default (with
well-known passwords), except for "rewt", which corresponds to a username
often used by (weenie) attackers.

Deficiency: The repeated definitions such as "EZsetup" and "ezsetup" reflect
that this variable is a set and not a pattern. Consequently, the exact username
must appear in it (with a pattern, we could use character classes to match both
upper and lower case).

‘forbidden_ids_if_no_password : set[string]’
Same as forbidden_ids except only considered forbidden if the login succeeded
with an empty password.

Default: "lp", a default passwordless IRIX account.

‘forbidden_id_patterns : pattern’
A pattern giving user ids that should be considered forbidden. Deficiency: This
pattern is currently only used to check Telnet/Rlogin user ids, not ids seen in
other contexts, such as FTP sessions.

Default: /(y[o0]u)(r|ar[e3])([o0]wn.*)/, a particularly egregious style of
username of which we’ve observed variants in different break-ins.

‘always_hot_ids : set[string]’
A list of usernames that should always be considered sensitive, though not
necessarily so sensitive that they should be terminated whenever used.

Default: { "lp", "warez", "demos", forbidden_ids, }. The "lp" and
"demos" accounts are specified here rather than forbidden_ids because
it’s possible that they might be used for legitimate accounts. "warez" (for
“wares”, i.e., bootlegged software) is listed because its use likely constitutes a
policy violation, not a security violation.

Note: forbidden_ids is incorporated into always_hot_ids to avoid replicating
the list of particularly sensitive ids by listing it twice and risking inconsistencies.

‘hot_ids set[string]’
User ids that generate alerts if the user logs in successfully.

Default: { "root", "system", always_hot_ids, }. The ones included in ad-
dition to always_hot_ids are only considered sensitive if the user logs in suc-
cessfully.

Chapter 7: Analyzers and Events 114

7.16 The ftp Analyzer

The ftp analyzer processes traffic associated with the FTP file transfer service RFC-959.
Bro instantiates an ftp analyzer for any connection with service port 21/tcp, providing
you have loaded the ftp analyzer, or defined a handler for ftp_request or ftp_reply.

The analyzer uses a capture filter of “port ftp” (See: Section 7.1.2 [Filtering], page 84).
It generates summaries of FTP sessions; looks for sensitive usernames, access to sensitive
files, and possible FTP “bounce” attacks, in which the host specified in a “PORT” or “PASV”
directive does not correspond to the host sending the directive; or in which a different host
than the server (client) connects to the endpoint specified in a PORT (PASV) directive.

7.16.1 The ftp_session_info record

The main data structure managed by the ftp analyzer is a collection of ftp_session_info
records, where the record type is shown below:

type ftp_session_info: record {
id: count; # unique number associated w/ session
user: string; # username, if determined
request: string; # pending request or requests
num_requests: count; # count of pending requests
request_t: time; # time of request
log_if_not_denied: bool; # unless code 530 on reply, log it
log_if_not_unavail: bool; # unless code 550 on reply, log it
log_it: bool; # if true, log the request(s)

};

The corresponding fields are:

‘id’ The unique session identifier assigned to this session. Sessions are numbered
starting at 1 and incrementing with each new session.

‘user’ The username associated with this session (from the initial FTP authentication
dialog), or an empty string if not yet determined.

‘request’ The pending request, if the client has issued any. Ordinarily there would be
at most one pending request, but a client can in fact send multiple requests to
the server all at once, and an attacker could do so attempting to confuse the
analyzer into mismatching responses with requests, or simply forgetting about
previous requests.

‘num_requests’
A count of how many requests are currently pending.

‘request_t’
The time at which the pending request was issued.

‘log_if_not_denied’
If true, then when the reply to the current request comes in, Bro should log it,
unless the reply code is 530 (“denied”).

‘log_if_not_unavail’
If true, then when the reply to the current request comes in, Bro should log it,
unless the reply code is 550 (“unavail”).

Chapter 7: Analyzers and Events 115

‘log_it’ If true, then when the reply to the current request comes in, Bro should log it.

7.16.2 ftp variables

The standard script defines the following redefinable variables:

‘ftp_guest_ids : set[string]’
A set of usernames associated with publicly accessible “guest” services. Bro in-
terprets guest usernames as indicating Bro should use the authentication pass-
word as the effective username.
Default: { "anonymous", "ftp", "guest", }.

‘ftp_skip_hot : set[addr, addr, string]’
Entries indicate that a connection from the first given address to the second
given address, using the given string username, should not be treated as hot
even if the username is sensitive.
Default: empty.
Example: redefining ftp_skip_hot using

redef ftp_skip_hot: set[addr, addr, string] += {
[[bob1.dsl.home.net, bob2.dsl.home.net],
bob.work.com, "root"], };

would result in Bro not alerting on FTP connections as user "root" from
either bob1.dsl.home.net or bob2.dsl.home.net to the server running on
bob.work.com.

‘ftp_hot_files : pattern’
Bro matches the argument given in each FTP file manipulation request (RETR,
STOR, etc.) against this pattern to see if the file is sensitive. If so, and if the
request succeeds, then the access is logged.
Default: aggdrop a pattern that matches various flavors of password files, plus
any string with eggdrop in it. Note: Eggdrop is an IRC management tool often
installed by certain attackers upon a successful break-in.

‘ftp_not_actually_hot_files : pattern’
A pattern giving exceptions to ftp_hot_files. It turns out that a pattern like
/passwd/ generates a lot of false hits, such as from passwd.c (source for the
passwd utility; this can turn up in FTP sessions that fetch entire sets of utility
sources using MGET) or passwd.html (a Web page explaining how to enter a
password for accessing a particular page).
Default: /(passwd|shadow).*.(c|gif|htm|pl|rpm|tar|zip)/ .

‘ftp_hot_guest_files pattern’
Files that guests should not attempt to access.
Default: .rhosts and .forward .

‘skip_unexpected : set[addr]’
If a new host (address) unexpectedly connects to the endpoint specified in a
PORT or PASV directive, then if either the original host or the new host is in this
set, no message is generated. The idea is that you can specify multi-homed hosts

Chapter 7: Analyzers and Events 116

that frequently show up in your FTP traffic, as these can generate innocuous
warnings about connections from unexpected hosts.
Default: some hp.com hosts, as an example. Most are specified as raw IP
addresses rather than hostnames, since the hostnames don’t always consistently
resolve.

‘skip_unexpected_net : set[addr]’
The same as skip_unexpected, except addresses are masked to /24 and /16
before looked up in this set.
Default: empty.

In addition, ftp_log holds the name of the FTP log file to which Bro writes FTP session
summaries. It defaults to open_log_file("ftp").

Here is an example of what entries in this file look like:
972499885.784104 #26 131.243.70.68/1899 > 64.55.26.206/ftp start
972499886.685046 #26 response (220 tuvok.ooc.com FTP server

(Version wu-2.6.0(1) Fri Jun 23 09:17:44 EDT 2000) ready.)
972499886.686025 #26 USER anonymous/IEUser@ (logged in)
972499887.850621 #26 TYPE I (ok)
972499888.421741 #26 PASV (227 64.55.26.206/2427)
972499889.493020 #26 SIZE /pub/OB/4.0/JOB-4.0.3.zip (213 1675597)
972499890.135706 #26 *RETR /pub/OB/4.0/JOB-4.0.3.zip, ABOR (complete)
972500055.491045 #26 response (225 ABOR command successful.)

Here we see a transcript of the 26th FTP session seen since Bro started running. The
first line gives its start time and the participating hosts and ports. The next line (split
across two lines above for clarity) gives the server’s welcome banner. The client then logged
in as user “anonymous”, and because this is one of the guest usernames, Bro recorded their
password too, which in this case was “IEUser@” (a useless string supplied by their Web
browser). The server accepted this authentication, so the status on the line is “(logged
in)”.

The client then issues a request for the Image file type, to which the server agreed.
Next they issued a PASV directive, and received a response instructing them to connect
to the server on port 2427/tcp for the next transfer. At this point, after issuing a SIZE
directive (to which the server returned 1,675,597 bytes), they send RETR to fetch the file
/pub/OB/4.0/JOB-4.0.3.zip. However, before the transfer completed, they issued ABOR,
but the transfer finished before the server processed the abort, so the log shows a status of
completed. Furthermore, because the client issued two commands without waiting for an
intervening response, these are shown together in the log file, and the line marked with a
“*” so it draws the eye. Finally, because Bro paired up the (completed) with the multi-
request line, it then treats the response to the ABOR command as a reply by itself, showing
in the last line that the server reported it successfully carried out the abort.

The corresponding lines in the ‘red’ file look like:
972499885.784104 565.836 ftp 118 427 131.243.70.68 64.55.26.206

RSTO L #26 anonymous/IEUser@
972499888.984116 165.098 ftp-data ? 1675597 131.243.70.68

64.55.26.206 RSTO L

Chapter 7: Analyzers and Events 117

The first line summarizes the FTP control session (over which the client sends its
requests and receives the server’s responses). It includes an addl annotation of “#26
anonymous/IEUser@”, summarizing the session number (so you can find the corresponding
records in the ftp log file) and the authentication information.

The second line summarizes the single FTP data transfer, of 1,675,597 bytes. The
amount of data sent by the client for this connection is shown as unknown because the
client aborted the connection with a RST (hence the state RSTO). For connections that Bro
does not look inside (such as FTP data transfers), it learns the amount of data transferred
from the sequence numbers of the SYN and FIN connection control packets, and can’t
(reliably) learn them for the sender of a RST. (It can for the receiver of the RST.)

They also aborted the control session (again, state RSTO), but in this case, Bro captured
all of the packets of the session, so it could still assign sizes to both directions.

7.16.3 ftp functions

The standard ftp script provides one function for external use:

‘is_ftp_data_conn (c: connection): bool ’
Returns true if the given connection matches one we’re expecting as the data
connection half of an FTP session. Note: This function is not idempotent: if the
connection matches an expected one, then Bro updates its state such that that
connection is no longer expected. It also logs a discrepancy if the connection
appears to be usurping another one that generated either a “PORT” or a “PASV”
directive.
Also returns true if the source port is 20/tcp and there’s currently an FTP
session active between the originator and responder, in case for some reason
Bro’s bookkeeping is inconsistent.

7.16.4 ftp event handlers

The standard script handles the following events:

‘ftp_request (c: connection, command: string, arg: string)’
Invoked upon the client side of connection c having made the request command
with the argument arg.
The processing depends on the particular command:

‘USER’ Specifies the username that the client wishes to use for authentica-
tion. If it is sensitive—in hot_ids (which the ftp analyzer accesses
via a @load of hot-ids)—then the analyzer flags the FTP session
as log-worthy. In addition, if the username is in forbidden_ids,
then the analyzer terminates the session.
The analyzer also updates the connection’s addl field with the user-
name.

‘PASS’ Specifies the password to use for authentication.
If the password is empty and the username appears in forbidden_
ids_if_no_password (also from the hot-ids analyzer), then the
analyzer terminates the connection.

Chapter 7: Analyzers and Events 118

If the username corresponds to a guest account (ftp_guest_ids),
then the analyzer updates the connection’s addl field with the pass-
word as additional account information. Otherwise, it generates an
account_tried event to facilitate detection of password guessing.

‘PORT’ Instructs the FTP server to connect to the given IP address and
port for delivery of the next FTP data item. The analyzer first
checks the address/port specifier for validity. If valid, it will gener-
ate an alert if either the address specified in the directive does not
match that of the client, or if the port corresponds to a “privileged”
port, i.e., one in the range 0–1023. Finally, it establishes state so
that is_ftp_data_conn can identify a subsequent connection cor-
responding to this directive as belonging to this FTP session.

‘ACCT’ Specifies additional accounting information associated with a ses-
sion, which the analyzer simply adds to the connection’s field.

‘APPE, CWD, DELE, MKD, RETR, RMD, RNFR, RNTO, STOR, STOU’
All of these manipulate files (and directories). The analyzer checks
the filename against the policies to see if it is sensitive in the context
of the given username (i.e., guest or non-guest), and, if so, marks
the connection to generate an alert unless the operation fails. The
analyzer also checks for an excessively long filename, currently by
checking its length against a Deficiency:hardwired maximum of 250
bytes.

‘ftp_reply (c: connection, code: count, msg: string, cont_resp: bool)’
Invoked upon the server side of connection c having replied to a request using
the given status code and text message. cont_resp is true if the reply line is
tagged as being continued to the next line. The analyzer only processes requests
when the last line of a continued reply is received.

The analyzer checks the reply against any expected for the connection (for
example, “log_if_not_denied”) and generates alerts accordingly. If the reply
corresponds to a PASV directive, then it parses the address/port specification
in the reply and generates alerts in an analogous fashion as done by the ftp_
request handler for PORT directives.

Finally, if the reply is not one that the analyzer is hardwired to skip (code 150,
used at the beginning of a data transfer, and code 331, used to prompt for a
password), then it writes a summary of the request and reply to the FTP log file
(See: Section 7.16.2 [ftp variables], page 115). Also, if the reply is an “orphan”
(there was no corresponding request, perhaps because Bro started up after the
request was made), then the reply is summarized in the log file by itself.

The standard ftp script defines one other handler, an instance of used to flush FTP
session information in case the session terminates abnormally and no reply is seen to the
pending request(s).

Chapter 7: Analyzers and Events 119

7.17 The http Analyzer

The http analyzer processes traffic associated with the Hyper Text Transfer Protocol
(HTTP) [RFC-1945], the main protocol used by the Web. Bro instantiates an http an-
alyzer for any connection with service port 80/tcp, providing you have loaded the http
analyzer, or defined a handler for http_request. It also instantiates an analyzer for service
ports 8080/tcp and 8000/tcp, as these are often also used for Web servers.

The analyzer uses a capture filter of “tcp dst port 80 or tcp dst port 8080 or tcp
dst port 8000” (See: Section 7.1.2 [Filtering], page 84). Note: This filter excludes traffic
sent by an HTTP server (that would be matched by tcp src port 80, etc.), because De-
ficiency: Bro doesn’t yet have an analyzer for HTTP replies. It generates summaries of
HTTP sessions (connections between the same client and server) and looks for access to
sensitive URIs (effectively, URLs).

7.17.1 http variables

‘sensitive_URIs : pattern’
Any HTTP method (e.g., GET, HEAD, POST) specifying a URI that matches this
pattern is flagged as sensitive.
Default: URIs with /etc/passwd or /etc/shadow embedded in them, or
/cfdocs/expeval (used in some Cold Fusion exploits). Note: This latter
generates some false hits; it’s mainly included just to convey the notion of
looking for direct attacks rather than attacks used to exploit sensitive files like
the first ones.
Deficiency: It would be very handy to have variables providing hooks for more
context when considering whether a particular access is sensitive, such as
whether the request was inbound or outbound.

‘sensitive_post_URIs : pattern’
Any POST method specifying a URI that matches this pattern is flagged as
sensitive.
Default: URIs with wwwroot embedded in them.

In addition, http_log holds the name of the HTTP log file to which Bro writes HTTP
session summaries. It defaults to open_log_file("http").

Here we show an example of what entries in this file look like:
972482763.371224 %1596 start 200.241.229.80 > 131.243.2.12
%1596 GET /ITG.hm.pg.docs/dissect/portuguese/dissect.html
%1596 GET /vfrog/bottom.icon.gif
%1596 GET /vfrog/top.icon.gif
%1596 GET /vfrog/movies/off.gif
%1596 GET /vfrog/new.frog.small.gif

Here we see a transcript of the 1596th HTTP session seen since Bro started running. The
first line gives its start time and the participating hosts. The next five lines all correspond
to GET methods retrieving different items from the Web server. Deficiency: Bro can’t
log whether the retrievals succeeded or failed because it doesn’t yet have an HTTP reply
analyzer.

The corresponding lines in the red file look like:

Chapter 7: Analyzers and Events 120

972482762.872695 481.551 http 441 5040 131.243.2.12 200.241.229.80
S3 X %10596

972482764.686470 18.7611 http 596 7712 131.243.2.12 200.241.229.80
S3 X %10596

972482764.685047 ? http 603 2959 131.243.2.12 200.241.229.80
S1 X %10596

That there are three rather than five reflects (i) that the client used persistent HTTP,
and so didn’t need one connection per item, but also (ii) the client used three parallel
connections (the maximum the standard allows is only two) to fetch the items more quickly.
As with FTP sessions, the %10596 addl annotation lets you correlate the red entries with
the log entries.

Note: All three of the connections wound up in unusual states. The first two are in state
S3, which, as indicated by Table 7.3, means that the responder (in this case, the Web server)
attempted to close the connection, but their was no reply from the originator. The last is
in state S1, indicating that neither side attempted to close the connection (which is why no
duration is listed for the connection).

7.17.2 http event handlers

The standard HTTP script defines one event handler:

‘http_request c: connection, request: string, URI: string’
Invoked whenever the client side of the given connection generates an HTTP
request. request gives the HTTP method and URI the associated resource.
The analyzer matches the URI against the ones defined as sensitive, as given
above.

Deficiency: As mentioned above, the event engine does not currently generate an http_
reply event. This is for two reasons: first, the HTTP request stream is much lower volume
than the HTTP reply stream, and I was interested in the degree to which Bro could get away
without analyzing the higher volume stream. (Of course, this argument is shallow, since one
could control whether or not Bro should analyze HTTP replies by deciding whether or not
to define an http_reply handler.) Second, matching HTTP replies in their full generality
involves a lot of work, because the HTTP standard allows replies to be delimited in a number
of ways. That said, most of the work for implementing http_reply is already done in the
event engine, but it is missing testing and debugging.

7.18 The ident Analyzer

The ident analyzer processes traffic associated with the Identification Protocol [RFC-1413],
which provides a simple service whereby clients can query Ident servers to discover user
information associated with an existing connection between the server’s host and the client’s
host. Bro instantiates an ident analyzer for any connection with service port 113/tcp,
providing you have loaded the ident analyzer, or defined a handler for ident_request,
ident_reply, or ident_error.

The analyzer uses a capture filter of “tcp port 113” (See: Section 7.1.2 [Filtering],
page 84). The ident_reply handler annotates the addl field of the connection for which
the Ident client made its query with the user information returned in the reply. It also

Chapter 7: Analyzers and Events 121

checks the user information against sensitive usernames, because a match indicates that the
connection in the Ident query was initiated by a possibly-compromised account.

7.18.1 ident variables

The standard script defines the following pair of redefinable variables:

‘hot_ident_ids : set[string]’
usernames to flag as sensitive if they appear in an Ident reply.
Default: always_hot_ids (See: Section 7.15 [hot-ids Module], page 113).

‘hot_ident_exceptions : set[string]’
usernames not to consider sensitive even if they appear in hot_ident_ids.
Default: { "uucp", "nuucp", "daemon", }. These usernames are exceptions
because daemons sometimes run with the given user ids and their use is often
innocuous.

7.18.2 ident event handlers

The standard script handles the following events:

‘ident_request (c: connection, lport: port, rport: port)’
Invoked when a client request arrives on connection c, querying about the
connection from local port lport to remote port rport, where local and remote
are relative to the client.

‘ident_reply (c: connection, lport: port, rport: port, user_id: string,
system: string)’

Invoked when a server replies to an Ident request. lport and rport are again
the local and remote ports (relative to the client) of the connection being asked
about. user_id is the user information returned in the Ident server’s reply, and
system is information regarding the operating system (the Ident specification
does not further standardize this information).
The handler annotates the queried connection with the user information, which
it also checks against hot_ident_ids and hot_ident_exceptions as discussed
above. At present, it does nothing with the system information.

‘ident_error (c: connection, lport: port, rport: port, line: string)’
Invoked when the given request yielded an error reply from the Ident server.
The handler annotates the connection with ident/<error>, where error is the
text given in line.

7.19 The login Analyzer

The login analyzer inspects interactive login sessions to extract username and password
information, and monitors user keystrokes and the text returned by the login server. It
is one of the most powerful Bro modules for detecting break-ins to Unix systems because
of the ability to look for particular commands that attackers often execute once they have
penetrated a Unix machine.

The analyzer is generic in the sense that it applies to more than one protocol. Currently,
Bro instantiates a login analyzer for both Telnet [RFC-854] and Rlogin [RFC-1282] traffic.

Chapter 7: Analyzers and Events 122

In principle, it could do the same for other protocols such as SSH [RFC-XXX] or perhaps X11
[RFC-1013], if one could write the corresponding elements of the event engine to decrypt
the SSH session (naturally, this would require access to the encryption keys) or extract
authentication information and keystrokes from the X11 event stream. Note: The analyzer
does an exceedingly limited form of SSH analysis; see hot_ssh_orig_ports .

For Telnet, the event engine knows how to remove in-band Telnet option sequences [RFC-
855] from the text stream, and does not deliver these to the event handlers, except for a few
options that the engine analyzes in detail (such as attempts to negotiate authentication).
Unfortunately, the Telnet protocol does not include any explicit marking of username or
password information (unlike the FTP protocol, as discussed in Section 7.16 [ftp Analyzer],
page 114). Consequently, Bro employs a series of heuristics that attempt to extract the
username and password from the authentication dialog the session is presumed to begin
with. The analysis becomes quite complicated due to the possible use of type-ahead and
editing sequences by the user, plus the possibility that the user may be an attacker who
attempts to mislead the heuristics in order to disguise the username they are accessing.

Analyzing Rlogin is nominally easier than analyzing Telnet because Rlogin has a simpler
in-band option scheme, and because the Rlogin protocol explicitly indicates the username
in the initial connection dialog. However, this last is not actually a help to the analyzer,
because for most Rlogin servers, if the initial username fails authentication (for example,
is not present in the .rhosts file local to the server), then the server falls back on the
same authentication dialog as with Telnet (prompting for username and then password, or
perhaps just for a password to go with the transmitted username). Consequently, the event
engine employs the same set of heuristics as for Telnet.

Each connection processed by the analyzer is in a distinct state: user attempting to au-
thenticate, user has successfully authenticated, analyzer is skipping any further processing,
or the analyzer is confused (See: Section 7.19.1 [login analyzer confusion], page 123). You
can find out the state of a given connection using get_login_state.

The analyzer uses a capture filter of “tcp port 23 or tcp port 513” Section 7.1.2
[Filtering], page 84. It annotates each connection with the username(s) present in
the authentication dialog. If the username was authenticated successfully, then it en-
closes the annotation in quotes. If the authentication failed, then the name is marked
as failed/<username>. So, for example, if user “smith” successfully authenticates, then
the connection’s addl field will have "smith" appended to it:

931803523.006848 254.377 telnet 324 8891 1.2.3.4 5.6.7.8 SF L "smith"

while if “smith” failed to authenticate, the report will look like:
931803523.006848 254.377 telnet 324 8891 1.2.3.4 5.6.7.8 SF L fail/smith

and if they first tried as “smith” and failed, and then succeeded as “jones”, the record
would look like:

931803523.006848 254.377 telnet 324 8891 1.2.3.4 5.6.7.8 SF L
fail/smith "jones"

Note: The event engine’s heuristics can sometimes get out of synch such that it interprets
a password as a username; in addition, users sometimes type their password when they
should instead enter their username. Consequently, the connection logs sometimes include
passwords in the annotations, and so should be treated as very sensitive information (e.g.,
not readable by any user other than the one running Bro).

Chapter 7: Analyzers and Events 123

7.19.1 login analyzer confusion

Because there is no well-defined protocol for Telnet authentication (or Rlogin, if the initial
.rhosts authentication fails), the login analyzer employs a set of heuristics to detect the
username, password, and whether the authentication attempt succeeded. All in all, these
heuristics work quite well, but it is possible for them to become confused and reach incorrect
conclusions.

Bro attempts to detect such confusion. If it does, then it generates a event, after which
the event engine will no longer attempt to follow the authentication dialog. In particu-
lar, it will not generate subsequent login_failure or login_sucess events. The login_
confused event includes a string describing the type of confusion, using one of the values
given in the table below.

Chapter 7: Analyzers and Events 124

Type of confusion Meaning
"excessive typeahead" The user has typed ahead 12 or more lines. Defi-

ciency: The upper bound should be adjustable.
"extra repeat text" The user has entered more than one VMS re-

peat sequence (an escape followed by "[A") on
the same line. Note: Bro determines that a lo-
gin session involves a VMS server if the server
prompts with "Username:". It then interprets
VMS repeat sequences as indicating it should
replace the current line with the previous line.

"multiple USERs" The user has specified more than one username
using the $USER environment variable.

"multiple login prompts" The analyzer has seen several login prompts on
the same line, and has not seen a corresponding
number of lines typed ahead previously by the
user.

"no login prompt" The analyzer has seen 50 lines sent by the
server without any of them matching login
prompts. Deficiency: The value of 50 should
be adjustable.

"no username" The analyzer is generating an event after having
already seen a login failure, but the user’s input
has not provided another username to include
with the event. Note: If the analyzer’s heuris-
tics indicate it’s okay that no new username has
been given, such as when the event is gener-
ated due to one connection endpoint closing the
connection, then it instead uses the username
<none>.

"no username2" The analyzer saw an additional password
prompt without seeing an intervening username,
and it has no previous username to reuse.

"non empty multi login" The analyzer saw multiple adjacent login
prompts, with an apparently ignored interven-
ing username typed-ahead between them.

"possible login ploy" The client sent text thatmatches one of the pat-
terns reflecting text usually sent by the server.
This form of confusion can reflect an attacker
attempting to evade the monitor. For example,
the client may have sent the text "login: as
a username so that when echoed back by the
server, the analyzer would misinterpret it as re-
flecting another login prompt from the server.

"repeat without username" The user entered a VMS repeat sequence but
there is no username to repeat. (See extra
repeat text for a discussion of the analyzer’s
heuristics for dealing with VMS servers.)

"responder environment" The responder (login server) has signaled a set
of environment variables to the originator (login
client). This is in the opposite direction as to
what makes sense.

"username with embedded
repeat"

The line repeated by a VMS server in response
to a repeat sequence itself contains a repeat
sequence.

Table 7.4: Different types of confusion that login analyzer can report

Chapter 7: Analyzers and Events 125

7.19.2 login variables

The standard script defines a large number of variables for refining the analysis policy:

‘input_trouble : pattern’
lists patterns that the analyzer should flag if they appear in the user’s input
(keystroke) stream.
The analyzer searches for these patterns both in the raw text typed by the user
and the same lines after applying editing using the edit function twice: once
with interpreting BS (ctrl-H) as delete-one-character, and once with DEL as
the edit character. If any of these matches, then the analyzer considers the
pattern to have matched.
eggdrop Default: a pattern matching occurrences of the strings “rewt”,
“eggdrop”, “loadmodule”, or “/bin/eject”. The first of these is a popular
username attackers use for root backdoor accounts. The second reflects that
one prevalent class of attackers are devotees of Internet Relay Chat (IRC),
who frequently upon breaking into an account install the IRC eggdrop utility.

‘edited_input_trouble : pattern’
is the same as input_trouble except the analyzer only checks the edited user
input against the pattern, not the raw input (see above).
This variable is provided so you can specify patterns that can occur innocuously
as typos; whenever the user corrects the typo before terminating the line, the
pattern won’t match, because it won’t be present in the edited version of the
line. In addition, for matches to these patterns, the analyzer delays reporting
the match until it sees the next line of output from the server. It then includes
both the line that triggered the match and the corresponding response from
the server, which makes it easy for a human inspecting the logs to tell if the
occurrence of the pattern was in fact innocuous.
Here’s an example of an innocuous report:

936723303.760483 1.2.3.4/21550 > 5.6.7.8/telnet
input "cd ..." yielded output "ksh: ...: not found."

It was flagged because the user’s input included “...”, a name commonly used
by attackers to surreptitiously hide a directory containing their tools and the
like. However, we see from the Telnet server’s response that this was not actual
access to such a directory, but merely a typing mistake.
On the other hand:

937528764.579039 1.2.3.4/3834 > 5.6.7.8/telnet
input "cd ..." yielded output "maroon# ftp

sunspot.sunspot.noao.edu "

shows a problem—the lines returned by the server was a root prompt
(“maroon#”), to which the user issued a command to access a remote FTP
server.
Deficiency: The analyzer should decouple the notion of waiting to receive the
server’s reply from the notion of matching only the edited form of the line; there
might be raw inputs for which it is useful to see the server’s response, and edited

Chapter 7: Analyzers and Events 126

inputs for which the server’s response is unimportant in terms of knowing that
the input spells trouble.

Default: the pattern

/[\t]*cd[\t]+(([’"]?\.\.\.)|(["’](\.[^"’]*)[\t]))/

which looks for a “cd” command to either a directory beginning with “...”
(optionally quoted by the user) or a directory name beginning with “.” that is
quoted and includes an embedded blank or tab.

‘output_trouble : pattern’
lists patterns that the analyzer should flag if they occur in the output sent by
the login server back to the user.

PATH_UTMP sensitive pattern smashdu.c exploit tool Default: the pattern

/^-r.s.*root.*\/bin\/(sh|csh|tcsh)/
| /Jumping to address/
| /smashdu\.c/
| /PATH_UTMP/
| /Log started at =/
| /www\.anticode\.com/
| /smurf\.c by TFreak/
| /Trojaning in progress/
| /Super Linux Xploit/

The first of these triggers any time the user inspects with the ls utility an exe-
cutable whose pathname ends in /bin/ followed by one of the popular command
shells, and the ls output shows that the command shell has been altered to be
setuid to root. The remainder match either the output generated by some pop-
ular exploit tools (for example, “Jumping to address”, present in many buffer
overflow exploit tools), exploit tool names (“smashdu.c”), text found within
the tool source code (“smurf.c by TFreak”), or URLs accessed (say via the
lynx or fetch utilities) to retrieve attack software (“www.anticode.com”).

‘backdoor_prompts : pattern’
lists patterns that the analyzer should flag if they are seen as the first line sent
by the server to the user, because they often correspond with backdoors that
offer a remote user immediate command shell access without having to first
authenticate.

Default: the pattern “/^[!-~]*(?)[#%$] /”, which matches a line that begins
with a series of printable, non-blank characters and ends with a likely prompt
character, with a blank just after the prompt character and perhaps before it.

‘non_backdoor_prompts : pattern’
lists patterns that if a possible backdoor prompt also matches, then the analyzer
should not consider the server output as indicating a backdoor prompt. Used
to limit false positives for backdoor_prompts.

Default: the pattern “/^ *#.*#/”, which catches lines with more than one
occurrence of a #. Some servers generate such lines as part of their welcome
banner.

Chapter 7: Analyzers and Events 127

‘hot_terminal_types : pattern’
lists “magic” terminal types sometimes used by attackers to access backdoors.
Both Telnet and Rlogin have mechanisms for negotiating a terminal type (name;
e.g., “xterm”); these backdoors trigger and skip authentication if the name has
a particular value.
VT666 Default: the name “VT666”, one of the trigger terminal types we’ve
observed in practice.

‘hot_telnet_orig_ports : set[port]’
Some Telnet backdoors trigger if the ephemeral port used by the client side of
the connection happens to be a particular value. This variable is used to list the
port values whose use should be considered as possibly indicating a backdoor.
Note: Clearly, this mechanism can generate false positives when the client by
chance happens to choose one of the listed ports.
Default: 53982/tcp, one of the trigger ports we have observed in practice.
Deficiency: There should be a corresponding variable for Rlogin backdoors trig-
gered by a similar mechanism.

‘hot_ssh_orig_ports : set[port]’
Similar to hot_telnet_orig_ports, only for SSH.
Default: 31337/tcp, a trigger port that we’ve observed in practice.

‘skip_authentication : set[string]’
A set of strings that, if present in the server’s initial output (i.e., its welcome
banner), indicates the analyzer should not attempt to analyze the session for
an authentication dialog. This is used for servers that provide public access
and don’t bother authenticating the user.
Default: the string "WELCOME TO THE BERKELEY PUBLIC LIBRARY", which corre-
sponds to a frequently accessed public server in the Berkeley area. (Obviously,
we include this default as an example, and not because it will be appropriate
for most Bro users! But it does little harm to include it.)
Deficiency: It would be more natural if this variable and a number of others
listed below were of type pattern rather than set[string]. They are actually
converted internally by the event engine into regular expressions.

‘direct_login_prompts : set[string]’
A set of strings that if seen during the authentication dialog mean that the user
will be logged in as soon as they answer the prompt.
Default: "TERMINAL?", a prompt used by some terminal servers.
login_prompts : set[string] A set of strings corresponding to login user-
name prompts during an authentication dialog.
Default: the strings

Login:
login:
Name:
Username:
User:

Chapter 7: Analyzers and Events 128

Member Name

and the default contents of direct_login_prompts.

‘login_failure_msgs : set[string]’
A set of strings that if seen in text sent by the server during the authentication
dialog correspond to a failed login attempt.
Default: the strings

invalid
Invalid
incorrect
Incorrect
failure
Failure,
User authorization failure,
Login failed,
INVALID
Sorry,
Sorry.

‘login_non_failure_msgs : set[string]’
A set of strings similar to login_failure_msgs that if present mean that the
server text does not actually correspond to an authentication failure (i.e., if
login_failure_msgs also matches, it’s a false positive).
Default: the strings

Failures
failures
failure since last successful login
failures since last successful login

‘router_prompts : set[string]’
A set of strings corresponding to prompts returned by the local routers when a
user successfully authenticates to the router. For the purpose of this variable,
see the next variable.
Default: empty.

‘login_success_msgs : set[string]’
A set of strings that if seen in text sent by the server during the authentication
dialog correspond to a successful authentication attempt.
Default: the strings

Last login
Last successful login
Last successful login
checking for disk quotas
unsuccessful login attempts
failure since last successful login
failures since last successful login

and the default contents of the router_prompts variable.

Chapter 7: Analyzers and Events 129

Deficiency: Since by default router_prompts is empty, this last inclusion does
nothing. In particular, if you redefine router_prompts then login_success_
msgs will not pick up the change; you will need to redefine it to (again) include
router_prompts, using: redef login success msgs += router prompts. This is
clearly a misfeature of Bro and will be fixed one fine day.

‘login_timeouts : set[string]’
A set of strings that if seen in text sent by the server during the authentication
dialog correspond to the server having timed out the authentication attempt.

Default: the strings

timeout
timed out
Timeout
Timed out
Error reading command input

(This last is returned by the VMS operating system.)

‘non_ASCII_hosts : set[addr]’
A set of addresses corresponding to hosts whose login servers do not (primarily)
use 7-bit ASCII. The analyzer will not attempt to analyze authentication dialogs
to such hosts, and will not complain about huge lines generated by either the
sender or receiver (per excessive_line).

Default: empty.

‘skip_logins_to : set[addr]’
A set of addresses corresponding to hosts for which the analyzer should not
attempt to analyze authentication dialogs.

Default: the (empty) contents of non_ASCII_hosts.

‘always_hot_login_ids : set[string] A set of usernames’
that the analyzer should always flag as sensitive, even if they’re seen in a session
for which the analyzer is confused Section 7.19.1 [login analyzer confusion],
page 123.

Default: the value of always_hot_ids defined by the hot analyzer.

‘hot_login_ids : set[string]’
A set of usernames that the analyzer should flag as sensitive, unless it sees
them in a session for which the analyzer is confused (See: Section 7.19.1 [login
analyzer confusion], page 123).

Default: the value of hot_ids defined by the hot-ids analyzer.

‘rlogin_id_okay_if_no_password_exposed : set[string]’
A set of username exceptions to hot_login_ids which the analyzer should not
flag as sensitive if the user authenticated without exposing a password (so, for
example, via .rhosts).

Default: the username "root".

Chapter 7: Analyzers and Events 130

7.19.3 login functions

The standard login script provides the following functions for external use:

‘is_login_conn (c: connection): bool ’
Returns true if the given connection is one analyzed by login (currently, Telnet
or Rlogin), false otherwise.

‘hot_login (c: connection, msg: string, tag: string) ’
Marks the given connection as hot, logs the given message, and demultiplexes
demux the subsequent server-side contents of the connection to a filename based
on tag and the client-side to a filename based on the name "keys". No return
value.

‘is_hot_id (id: string, successful: bool, confused: bool): bool’
Returns true if the username id should be considered sensitive, given that the
user either did or did not successfully authenticate, and that the analyze was
or was not in a confused state (See: Section 7.19.1 [login analyzer confusion],
page 123).

‘is_forbidden_id (id: string): bool ’
Returns true if the username id is present in forbidden_ids or forbidden_
id_patterns.

‘edit_and_check_line (c: connection, line: string, successful: bool):
check_info’

Tests whether the given line of text seen on connection c includes a sensi-
tive username, after first applying BS and DEL keystroke editing (see: Sec-
tion 7.19.2 [login variables], page 125). successful should be true if the user
has successfully authenticated, false otherwise.

The return value is a check_info record, which contains four check_info fields:

‘expanded_line’
All of the different editing interpretations of the line, separated by
commas. For example, if the original line is

"rob<BS><BS>ot"

then the different editing interpretations are "ro<BS><BS>ot" and
"root", so the return value will be:

"rob<BS><BS>ot,ro<BS><BS>ot,root"

Deficiency: Ideally, these values would be returned in a list of some
form, so that they can be accessed separately and unambiguously.
The current form is really suitable only for display to a person, and
even that can be quite confusing if line happens to contain commas
already. Or, perhaps an algorithm of “simply pick the shortest”
would find the correct editing every time anyway.

‘hot: bool’
True if any editing sequence resulted in a match against a sensitive
username.

Chapter 7: Analyzers and Events 131

‘hot_id: string’
The version of the input line (with or without editing) that was
considered hot, or an empty string if none.

‘forbidden: bool’
True if any editing sequence resulted in a match against a username
considered “forbidden”, per is_forbidden_id.

‘edit_and_check_user (c: connection, user: string, successful: bool, fmt_s:
string): bool’

Tests whether the given username used for authentication on connection c is
sensitive, after first applying BS and DEL keystroke editing (See: Section 7.19.2
[login variables], page 125). successful should be true if the user has success-
fully authenticated, false otherwise.
fmt_s is a fmt format specifying how the username information should be
included in the connection’s addl field. It takes two string parameters, the
current value of the field and the expanded version of the username as described
in expanded_line.
If edit_and_check_line indicates that the username is sensitive, then edit_
and_check_user records the connection into its own demultiplexing files . If
the username is forbidden, then unless the analyzer is confused, we attempt to
terminate the connection using terminate_connection.
Returns true if the connection is now considered “hot,” either due to having a
sensitive username, or because it was hot upon entry to the function.

‘edit_and_check_password(c: connection, password: string): bool’
Checks the given password to see whether it contains a sensitive username. If
so, then marks the connection as hot and logs the sensitive password. No return
value.
Note: The purpose of this function is to catch instances in which the event
engine becomes out of synch with the authentication dialog and mistakes what is,
in fact, a username being entered, for a password being entered. Such confusion
can come about either due to a failure of the event engine’s heuristics, or due
to deliberate manipulation of the event engine by an attacker.

7.19.4 login event handlers

The standard login script handles the following events:

‘login_failure (c: connection, user: string, client_user: string, password:
string, line: string)’

Invoked when the event engine has seen a failed attempt to authenticate as user
with password on the given connection c. client_user is the user’s username
on the client side of the connection. For Telnet connections, this is an empty
string, but for Rlogin connections, it is the client name passed in the initial
authentication information (to check against .rhosts). line is the line of text
that led the analyzer to conclude that the authentication had failed.
The analyzer first generates an account_tried event to facilitate detection of
password guessing, and then checks for a sensitive username or password. If the

Chapter 7: Analyzers and Events 132

username was not sensitive and the password is empty, then no further analysis
is applied, since clearly the attempt was half-hearted and aborted. Otherwise,
the analyzer annotates the connection’s addl field with fail/<username> to
mark the authentication failure, and also checks the client_user to see if it is
sensitive. If we then find that the connection is hot, the analyzer logs a message
to that effect.

‘login_success (c: connection, user: string, client_user: string, password:
string, line: string)’

Invoked when the event engine has seen a successful attempt to authenticate.
The parameters are the same as for login_failure.

The analyzer invokes check_hot with mode APPL_ESTABLISHED since the appli-
cation session has now been established. It generates an account_tried event
to facilitate detection of password guessing, and then checks for a sensitive
username or password. The event engine uses the special password "<none>"
to indicate that no password was exposed, and this mitigates the sensitivity
of logins using particular usernames per rlogin_id_okay_if_no_password_
exposed.

The analyzer annotates the connection’s addl field with "<username>" to mark
the successful authentication. Finally, if we then find that the connection is hot,
the analyzer logs a message to that effect.

‘login_input_line (c: connection, line: string)’
Invoked for every line of text sent by the client side of the login session to the
server side. The analyzer matches the text against input_trouble and edited_
input_trouble and invokes hot_login with a tag of "trb" if it sees a match,
which will log an alert concerning the connection. However, this invocation is
only done while the connection’s hot field count is <= 2, to avoid cascaded
alerts when an attacker gets really busy and steps on a lot of sensitive patterns.

‘login_output_line (c: connection, line: string)’
Invoked for every line of text sent by the server side of the login session to
the client side. The analyzer checks backdoor_prompts and any pending input
alerts that were waiting on the server output, per edited_input_trouble.
These last are then logged unless the output matched the pattern:

/No such file or directory/

Deficiency: Clearly, this pattern should not be hardwired but instead specified
by a redefinable variable.

Finally, if the line is not too long and the text matches output_trouble and
the connection’s hot field count is <= 2 (to avoid cascaded alerts), the analyzer
invokes hot_login with a tag of "trb". Deficiency: “Too long” is hardwired
to be a length ≥ 256 bytes. It, too, should be specifiable via a redefinable
variable. Note: We might wonder if not checking overly long lines presents
an evasion threat: the attacker can bury their access to a sensitive string in an
excessive line and thus avoid detection. While this is true, it doesn’t appear to
cost much. First, some of the sensitive patterns are generated in server output
that will be hard to manipulate into being overly long. Second, if the attacker

Chapter 7: Analyzers and Events 133

is trying to avoid detection, there are easier ways, such as passing their output
through a filter that alters it a good deal.

‘login_confused (c: connection, msg: string, line: string)’
Invoked when the event engine’s heuristics have concluded that they have be-
come confused and can no longer correctly track the authentication dialog (See:
Section 7.19.1 [login analyzer confusion], page 123). msg gives the particular
problem the heuristics detected (for example, multiple_login_prompts means
that the engine saw several login prompts in a row, without the type-ahead from
the client side presumed necessary to cause them) and line the line of text that
caused the heuristics to conclude they were confused.
Once declaring that it’s confused, the event engine will no longer attempt to
follow the authentication dialog. In particular, it will not generate subsequent
login_failure or login_success events.
Upon this event, the standard login script invokes check_hot with mode APPL_
ESTABLISHED since it could well be that the application session is now estab-
lished (it can’t know for sure, of course, because the event engine has given up).
It annotates the connection’s addl field with confused<line> to mark the con-
fused state, and then logs to the ‘wierd’ file the particulars of the connection
and the type of confusion (msg). Deficiency: This should be done by generating
a weird-related event instead.
Finally, the analyzer invokes set_record_packets to specify that all of the
packets associated with this connection should be recorded to the ‘trace’ file.
Note: For the current login analyzer, this call is not needed—it records every
packet of every login session anyway, because the generally philosophy is that
Bro should record whatever it analyzes, so that the analysis may be repeated or
examined in detail. Since the current analyzer looks at every input and output
line via login_input and login_output, it records all of the packets of every
such analyzed session. There is commented-out text in login_success to be
used if login_input and login_output are not being used; it turns off recording
of a session’s packets after the user has successfully logged in (assuming the
connection is not considered hot).

‘login_confused_text (c: connection, line: string)’
Invoked for every line the user types after the event engine has entered the
confused state. If the connection is not already considered hot, then the an-
alyzer checks for the presence of sensitive usernames in the line using edit_
and_check_line, and, if present, annotates the connection’s addl field with
confused<line>, logs that the connection has become hot, and invokes set_
record_packets to record to the ‘trace’ file all of the packets associated with
the connection.

‘login_terminal (c: connection, terminal: string)’
Invoked when the client transmits a terminal type to the server. The mechanism
by which the client transmits the type depends on the underlying protocol
(Rlogin or Telnet).
The handler checks the terminal type against hot_terminal_types and if it
finds a match invokes hot_login with a tag of "trb".

Chapter 7: Analyzers and Events 134

‘excessive_line (c: connection)’
Invoked when the event engine observes a very long line sent by either the client
or the server. Such long lines are seen as potential attempts by an attacker to
evade the login analyzer; or, possibly, as a Login session carrying an unusual
application. Note: One example we have observed occurs when a high-bandwidth
binary payload protocol such as Napster is sent over the Telnet or Rlogin well-
known port in an attempt to either evade detection or tunnel through a firewall.

This event is actually generic to any TCP connection carrying an application
that uses the “Network Virtual Terminal” (NVT) abstraction, which presently
comprises Telnet and FTP. But the only handler defined in the demonstration
Bro policy is for Telnet, hence we discuss it here. For this reason, the handler
first invokes is_login_conn to check whether the connection is in fact a login
session. If so, then if the connection is not hot, and if the analyzer finds the
server listed in non_ACSII_HOSTS, then it presumes the long line is due to use
of a non-ASCII character set; the analyzer invokes set_login_state and set_
record_packets to avoid further analysis or recording of the connection.

Otherwise, if the connection is still in the authentication dialog, then the han-
dler generates a event with a confusion-type of "excessive_line", and changes
the connection’s state to confused.

Deficiency: The event engine is currently hardwired to consider a line of >=
1024 bytes as “excessive”; clearly this should be user-redefinable.

‘inconsistent_option (c: connection)’
NVT options are specified by the client and server stating which options they
are willing to support vs. which they are not, and then instructing one another
which in fact they should or should not use for the current connection. If the
event engine sees a peer violate either what the other peer has instructed it
to do, or what it itself offered in terms of options in the past, then the engine
generates an inconsistent_option event.

The handler for this event simply records an entry about it to the file. Defi-
ciency: The event handler invocation does not include enough information to
determine what option was inconsistently specified; in addition, it would be con-
venient to integrate the handling of problems like this within the general “weird”
framework.

Note: As for excessive_line above, this event is actually a generic one appli-
cable to any NVT-based protocol. It is handled here because the problem most
often crops up for Telnet sessions. Note: Also, the handler does not check to
see whether the connection is a login session (as it does for excessive_line);
it serves as the handler for any NVT session with an excessive line.

Note: Finally, note that this event can be generated if the session contains a
stream of binary data. One way this can occur is when the session is encrypted
but Bro fails to recognize this fact.

‘bad_option (c: connection)’
If an NVT option is either ill-formed (e.g., a bad length field) or unrecognized,
then the analyzer generates this event.

Chapter 7: Analyzers and Events 135

The processing of this event (recording information to the file) and the
various notes and deficiencies associated with it are the same as those for
inconsistent_option above.

‘bad_option_termination (c: connection)’
If an NVT option fails to be terminated correctly (for example, a character
is seen within the option that is disallowed for use in the option), then the
analyzer generates this event.

The processing of this event (recording information to the file) and the
various notes and deficiencies associated with it are the same as those for
inconsistent_option above.

‘authentication_accepted (name: string, c: connection)’
The NVT framework includes options for negotiating authentication. When
such an option is sent from client to server and the server replies that it accepts
the authentication, then the event engine generates this event.

The handler annotates the connection’s addl field with auth<name>, unless
that annotation is already present.

‘authentication_rejected (name: string, c: connection)’
The same as authentication_accepted, except invoked when the server replies
that it rejects the attempted authentication.

The handler annotates the connection’s addl field with auth-failed<name>.

‘authentication_skipped (c: connection)’
Invoked when the event engine sees a line in the authentication dialog that
matches .

The handler annotates the connection’s addl field with “ skipped” to mark
that authentication was skipped, and then invokes skip_further_processing
and (unless the connection is hot) set_record_packets to skip any further
analysis of the connection, and to stop recording its packets to the ‘trace’ file.

‘connection_established (c: connection)’
connection_established is a generic event generated for all TCP connections;
however, the login analyzer defines an additional handler for it.

The handler first checks (via is_login_conn) whether this is a Telnet or Rlogin
connection. If so, it generates an authentication_skipped event if the server’s
address occurs in skip_logins_to, and also (for Telnet) checks whether the
client’s port occurs in hot_telnet_orig_ports, invoking hot_login with the
tag "orig" if it does.

For SSH connections, it likewise checks the client’s port, but in hot_ssh_orig_
ports, marking the connection as hot and logging a real-time alert if it is.

‘partial_connection (c: connection)’
As noted earlier, partial_connection is a generic event generated for all TCP
connections. The login analyzer also defines a handler for it, one which (if it’s
a Telnet/Rlogin connection) sets the connection’s state to confused and checks
for hot_telnet_orig_ports.

Chapter 7: Analyzers and Events 136

‘activating_encryption (c: connection)’
The NVT framework includes options for negotiating encryption. When such
a series of options is successfully negotiated, the event engine generates this
event. Note: The negotiation sequence is complex and can fail at a number of
points. The event engine does not attempt to generate events for each possible
failure, but instead only looks for the option sent after a successful negotiation
sequence.
The handler annotates the connection’s addl field with “(encrypted)” to mark
that authentication was encrypted. Note: The event engine itself marks the
connection as requiring no further processing. This is done by the event engine
rather than the handler because the event engine cannot do its job (regardless
of the policy the handler might desire) in the face of encryption.

7.20 The portmapper Analyzer

The portmapper analyzer monitors one particularly important form of remote procedure
call (RPC) [RFC-1831, RFC-1832] traffic: the portmapper service, used to map between
RPC program (and version) numbers and the TCP or UDP port on which the service
runs for a particular host. For example, rstatd is an RPC service that provides “remote
host status monitoring” so that a set of hosts can be informed when any of them reboots.
rstatd has been assigned a standard RPC program number of 100002. To find out the
corresponding TCP or UDP port on a given host, a remote host would usually first contact
the portmapper RPC service running on the host and request the port corresponding to
program 100002.

Call Meaning
NULL A do-nothing call typically provided by all RPC

services.
GETPORT Look up the port associated with a given RPC

program.
SET Add a new port mapping (or replace an existing

mapping) for an RPC program.
UNSET Remove a port mapping.
DUMP Retrieve all of the RPC program mappings.
CALLIT Both look up a program and then directly call

it.
Table 7.5: Types of calls to the RPC portmapper service

All in all, clients can make six different types of calls to the portmapper, as summarized
in the above table. Attackers often use GETPORT and DUMP to see whether a host may
be running an RPC service vulnerable to a known exploit.

The analyzer uses a capture filter of “port 111” (See: Section 7.1.2 [Filtering], page 84),
equivalent to “tcp port 111 or udp port 111” (since the portmapper service ordinarily
accepts calls using either TCP or UDP, both on port 111). It checks the different types of
portmapper calls against policies expressed using a number of different variables.

Note: An important point not to overlook is that an attacker does not have to first call
the portmapper service in order to call an RPC program. They might instead happen to know
the port on which the service runs a priori, since for example it may generally run on the

Chapter 7: Analyzers and Events 137

same port for a particular operating system; or they might scan the host’s different TCP or
UDP ports directly looking for a reply from the service. Thus, while portmapper monitoring
proves very useful in detecting attacks, it does not provide comprehensive monitoring of
attempts to exploit RPC services.

7.20.1 portmapper variables

The standard script provides the following redefinable variables:

‘rpc_programs : table[count] of string’
Maps RPC program numbers to a string used to name the service. For example,
the [100002] entry is mapped to "rstatd".
Default: a large list of RPC services.

‘NFS_services : set of string’
Lists the names of those RPC services that correspond to Network File System
(NFS) [RFC-1094, RFC-1813] services. This variable is provided because it is
convenient to express policies specific to accessing NFS file systems.
Default: the services mountd, nfs, pcnfsd, nlockmgr, rquotad, status.
Deficiency: Bro’s notion of NFS is currently confined to just knowledge of the
existence of these services. It does not analyze the particulars of different NFS
operations.

‘RPC_okay : set[addr, addr, string]’
Indexed by the host providing a given service and then by the host accessing
the service. If an entry is present, it means that the given access is allowed.
For example, an entry of:

[1.2.3.4, 5.6.7.8, "rstatd"]

means that host 5.6.7.8 is allowed to access the rstatd service on host 1.2.3.4.
Default: empty.

‘RPC_okay_nets : set[net]’
A set of networks allowed to make GETPORT requests without complaint. The
notion behind providing this variable is that the listed networks are trusted.
However, the trust doesn’t extend beyond GETPORT to other portmapper
requests, because GETPORT is the only portmapper operation used routinely
by a set of hosts trusted by another set of hosts (but that don’t belong to the
same group, and hence are not issuing SET and UNSET calls).
Default: empty.

‘RPC_okay_services : set[string]’
A set of services for which GETPORT requests should not generate complaints.
These might be services that are widely invoked and believed exploit-free, such
as walld, though care should be taken with blithely assuming that a given service
is indeed exploit-free.
Note that, like for RPC_okay_nets, the trust does not extend beyond GET-
PORT, because it should be the only portmapper operation routinely invoked.
Default: empty.

Chapter 7: Analyzers and Events 138

‘NFS_world_servers : set[addr]’
A set of hosts that provide public access to an NFS file system, and thus should
not have any of their NFS traffic flagged as possibly sensitive. (The presumption
here is that such public servers have been carefully secured against any remote
NFS operations.) An example of such a server might be one providing read-only
access to a public database.

Default: empty.

‘RPC_dump_okay : set[addr, addr]’
Indexed first by the host requesting a portmapper dump, and second by the
host from which it’s requesting the dump. If an entry is present, then the dump
operation is not flagged.

Default: empty.

‘any_RPC_okay : set[addr, string]’
Pairs of hosts and services for which any GETPORT access to the given service
is allowed.

‘sun-rpc.mcast.net’
Default:

[NFS_world_servers, NFS_services],
[sun-rpc.mcast.net, "ypserv"]

The first of these allows access to any NFS service of any of the NFS_world_
servers, using Bro’s cross-product initialization feature (See Section 3.12.2
[Initializing Tables], page 26). The second allows ypserv requests to the multi-
cast address reserved for RPC multicasts.1

‘suppress_pm_log : table[addr, string] of bool’
Do not generate real-time alerts for access by the given address for the given
service. Note that unlike most Bro policy variables, this one is not const but is
modified at run-time to add to it any host that invokes the walld RPC service,
so that such access is only reported once for each host.

Default: empty, but dynamic as discussed above.

7.20.2 portmapper functions

The standard script provides the following externally accessible functions:

‘rpc_prog (p: count): string ’
Returns the name of the RPC program with the given number, if it’s present
in ; otherwise returns the text "unknown-<p>".

‘pm_check_getport (r: connection, prog: string): bool ’
Checks a GETPORT request for the given program against the policy expressed
by RPC_okay_services, any_RPC_okay, RPC_okay, and RPC_okay_nets, re-
turning true if the request violates policy, false if it’s allowed.

1 I don’t know how much this type of access is actually used in practice, but experience shows that
requests for ypserv directed to that address pop up not infrequently.

Chapter 7: Analyzers and Events 139

‘pm_activity (r: connection, log_it: bool) ’
A bookkeeping function invoked when there’s been portmapper activity on the
given connection.

The function records the connection via , unless it is a TCP connection (which
will instead be recorded by connection_finished). If log_it is true then the
function generates a real-time alert of the form:

rpc: <connection-id> <RPC-service> <r$addl>

For example:

972616255.679799 rpc: 65.174.102.21/832 >
182.7.9.47/portmapper pm_getport: nfs -> 2049/udp

However, it does not generate the alert if either the client host and service are
present in suppress_pm_log, or if it already generated an alert in the past for
the same client, server and service (to prevent alert cascades).

‘pm_request (r: connection, proc: string, addl: string, log_it: bool) ’
Invoked when the given connection has made a portmapper request of some
sort for the given RPC procedure proc. addl gives an annotation to add to the
connection’s addl field. If log_it is true, then connection should be logged; it
will also be logged if the function determines that it is hot.

The function first invokes check_scan and scan_hot (with a mode of CONN_
ESTABLISHED), unless r is a TCP connection, in which case these checks have
already been made by connection_established. The function then adds addl
to the connection’s addl field, though if the field’s length already exceeds 80
bytes, then it just tacks on "..." (unless already present). This last is necessary
because Bro will sometimes see zillions of successive portmapper requests that
all use the same connection ID, and these will each add to addl until it becomes
unwieldy in size. Deficiency: Clearly, the byte limit of 80 should be adjustable.

Finally, the function invokes check_hot with a mode of CONN_FINISHED, and
pm_activity to finish up bookkeeping for the connection.

No return value.

‘pm_attempt (r: connection, proc: string, status: count, addl: string,
log_it: bool) ’

Invoked when the given connection attempted to make a portmapper request
of some sort, but the request failed or went unanswered. The arguments are
the same as for pm_request, with the addition of status, which gives the RPC
status code corresponding to why the attempt failed (see below).

The function first invokes check_scan and check_hot (with a mode of CONN_
ATTEMPTED), unless r is a TCP connection, in which case these checks have
already been made by connection_attempt.

The function then adds addl to the connection’s addl field, along with a text
description of the RPC status code, as given in the Table below.

No return value.

Chapter 7: Analyzers and Events 140

Status description Meaning
"ok" The call succeeded.
"prog unavail" The call was for an RPC program that has not registered with

the portmapper.
"mismatch" The call was for a version of the RPC program that has not

registered with the portmapper.
"garbage args" The parameters in the call did not decode correctly.
"system err" A system error (such as out-of-memory) occurred when pro-

cessing the call.
"timeout" No reply was received within 24 seconds of the request.
"auth error" The caller failed to authenticate to the server, or was not

authorized to make the call.
"unknown" An unknown error occurred.

Table 7.6: Types of RPC status codes

7.20.3 portmapper event handlers

The standard script handles the following events:

‘pm_request_null (r: connection)’
Invoked upon a successful portmapper request for the “null” procedure. The
script invokes pm_request with log_it=F.

‘pm_request_set (r: connection, m: pm_mapping, success: bool)’
Invoked upon a nominally successful portmapper request to set the portmapper
binding m. The script invokes pm_request with log_it=T. success is true if
the server honored the request, false otherwise; the script turns this into an
annotation of "ok" or "failed".
The pm_mapping type (for m) has three fields, program: count, version: count
and p: port, the port for the mapping of the given program and version. pm_
mapping

‘pm_request_unset (r: connection, m: pm_mapping, success: bool)’
Invoked upon a nominally successful portmapper request to remove a portmap-
per binding. The script invokes pm_request with log_it=T. success is true
if the server honored the request, false otherwise; the script turns this into an
annotation of "ok" or "failed".

‘pm_request_getport (r: connection, pr: pm_port_request, p: port)’
Invoked upon a successful portmapper request to look up a portmapper binding.
pr, of type pm_port_request, has three fields: program: count, version:
count, and is_tcp: bool, this last indicating whether the caller is request the
TCP or UDP port, if the given program/version has mappings for both. The
script invokes pm_request with log_it set according to the return value of and
an annotation of the mapping.

‘pm_request_dump (r: connection, m: pm_mappings)’
Invoked upon a successful portmapper request to dump the portmapper bind-
ings. The script invokes pm_request with log_it=T unless indicates that the
dump call is allowed. The script ignores m, which gives the mappings as a

Chapter 7: Analyzers and Events 141

table[count] of pm_mapping, where the table index simply reflects the order
in which the mappings were returned, starting with an index of 1. Deficiency:
What the script should do, instead, is keep track of the mappings so that Bro can
identify the service associated with connections for otherwise unknown ports.

‘pm_request_callit (r: connection, pm_callit_request, p: port)’
Invoked upon a successful portmapper request to look up and call an RPC pro-
cedure. The script invokes pm_request with log_it=T unless the combination
of the caller and the program are in suppress_pm_log. Finally, if the program
called is walld, then the script adds the caller to suppress_pm_log.
The pm_callit_request type has four fields: pm_callit_request program:
count, version: count, proc: count, and arg_size: count. These reflect
the procedure being looked up and called, and the size of the arguments being
passed to it, respectively. Deficiency: Currently, the event engine does not do
any analysis or refinement of the arguments passed to the procedure (such as
making them available to the event handler) or the return value. p is the port
value returned by the call.

‘pm_attempt_null (r: connection, status: count)’
Invoked upon a failed portmapper request for the “null” procedure. status
gives the reason for the failure. The script invokes pm_attempt with log_it=T.

‘pm_attempt_set (r: connection, status: count, m: pm_mapping)’
Invoked upon a failed portmapper request to set the portmapper binding m.
The script invokes pm_attempt with log_it=T.

‘pm_attempt_unset (r: connection, status: count, m: pm_mapping)’
Invoked upon a failed portmapper request to remove a portmapper binding.
The script invokes pm_attempt with log_it=T.

‘pm_attempt_getport (r: connection, status: count, pr: pm_port_request)’
Invoked upon a failed portmapper request to look up a portmapper binding. pr,
of type pm_port_request, has three fields: program: count, version: count,
and is_tcp: bool, this last indicating whether the caller requested the TCP
or UDP port. The script invokes pm_attempt with log_it set according to the
return value of pm_check_get_port.

‘pm_attempt_dump (r: connection, status: count)’
Invoked upon a failed portmapper request to dump the portmapper bindings.
The script invokes pm_attempt with log_it=T unless RPC_dump_okay indicates
that the dump call is allowed.

‘pm_attempt_callit (r: connection, status: count, pm_callit_request)’
Invoked upon a failed portmapper request to look up and call an RPC proce-
dure. The script invokes pm_attempt with log_it=T unless the combination of
the caller and the program are in suppress_pm_log. Finally, if the program
called is walld, then the script adds the caller to suppress_pm_log.

‘pm_bad_port (r: connection, bad_p: count)’
Invoked when a portmapper request or response includes an invalid port num-
ber. Since ports are represented by unsigned 4-byte integers, they can stray

Chapter 7: Analyzers and Events 142

outside the allowed range of 0–65535 by being >= 65536. The script invokes
conn_weird_log with a weird tag of "bad_pm_port".

7.21 The analy Analyzer

The analy analyzer provides a limited mechanism to use Bro to do statistical analysis
on TCP connections. Its primary purpose is to demonstrate that Bro has applications to
network traffic analysis beyond intrusion detection. It defines one event handler:

‘conn_stats c: connection, os: endpoint_stats, rs: endpoint_stats’
Invoked for each connection when it terminates (for whatever reason). os and
rs are the statistics for the originator endpoint and the responder endpoint,
respectively; the table below gives the different record fields.

endpoint_stats fields for summarizing connection endpoint statistics, all of type count.

Chapter 7: Analyzers and Events 143

Field Meaning
num pkts The number of packets sent by the endpoint, as seen by the moni-

tor. The endpoint may have sent others that the network dropped
upstream from the monitor.

num rxmit The number of packets retransmitted by the endpoint, as seen by
the monitor.

num rxmit bytes The number of bytes retransmitted by the endpoint.
num in order The number of packets sent by the endpoint that arrived at the

monitor in order, where "in order" means in the same order as
sent by the endpoint, rather than in sequence number. (Thus, a
retransmission can arrive in order, by this definition.) Bro deter-
mines if the packet arrived in order by applying heuristics to the IP
identification (ID) field, which in general will increase by a small
amount between successive packets transmitted by an endpoint.

num OO The number of packets sent by the endpoint that arrived at the
monitor out of order. See the previous entry for the definition of
"in order", and hence "out of order".

num repl The number of extra copies of packets sent by the endpoint that
arrived at the monitor. Bro considers a packet replicated if its
IP ID field is the same as for the previous packet it saw from the
endpoint. Using this definition, a replication is most likely caused
by a network mechanism such as duplication of a packet by a
router, rather than a transport mechanism such as retransmission,
though some TCPs fully reuse packets when retransmitting them,
including their IP ID field.

endian type Whether the advance of the IP ID field as seen by the mon-
itor was consistent with bigendian (network order) addition,
little-endian, or undetermined. The three values are repre-
sented by the Bro constants ENDIAN BIG, ENDIAN LITTLE,
and ENDIAN UNKNOWN. In addition, the value can be EN-
DIAN CONFUSED, meaning that the monitor saw conflicting ev-
idence for little- and big-endian.

Table 7.7: endpoint_stats fields for summarizing connection endpoint statistics, all of
type count

7.22 The signature Module

The signature module analyzes signature matches (see Chapter 8 [Signatures], page 160).
For each signature, you can specify one of the actions defined in Table 7.2. In addition,
the module identifies two types of exploit scans: horizontal (a host triggers a signature
for multiple destinations) and vertical (a host triggers multiple signature for the same
destination).

The module handles one event:

‘signature_match (state: signature_state, msg: string, data: string)’
Invoked upon a match of a signature which contains an event action (See
Section 8.2.2 [Actions], page 163).

Chapter 7: Analyzers and Events 144

It provides the following redefinable variables:

‘sig_actions : table[string] of count’
Maps signature IDs to actions as defined in the table below.

Action Meaning
SIG IGNORE Ignore the signature completely.
SIG QUIET Process for scan detection but don’t report

individually.
SIG FILE Write matches to signatures-log
SIG LOG Log matches and write them to signatures-log

Table 7.8: Possible actions to take for signatures matches
Default: SIG_FILE.

‘horiz_scan_thresholds : set[count]’
Generate a log message whenever a remote host triggers a signature for the
given number of hosts.
Default: { 5, 10, 50, 100, 500, 1000}

‘vert_scan_thresholds : set[count]’
Generate a log message whenever a remote host triggers the given number of
signatures for the same destination.
Default: { 5, 10, 50, 100, 500, 1000}

The module defines one function for external use:

‘has_signature_matched (id: string, orig: addr, resp: addr): bool’
Returns true if the given signature has already matched for the
(originator,responder) pair.

7.23 The SSL Analyzer

The SSL analyzer processes traffic associated with the SSL (Secure Socket Layer) protocol
versions 2.0, 3.0 and 3.1 (Add ssl refs XXX). SSL version 3.1 is also known as TLS (Transport
Layer Security) version 1.0 since from that version onward the IETF has taken responsibility
for further developement of SSL.

Bro instantiates an SSL analyzer for any connection with service ports 443/tcp
(https), 563/tcp (nntps), 585/tcp (imap4-ssl), 614/tcp (sshell), 636/tcp
(ldaps), 989/tcp (ftps-data), 990/tcp (ftps), 992/tcp (telnets), 993/tcp
(imaps), 994/tcp (ircs), 995/tcp (pop3s), providing you have loaded the SSL
analyzer, or defined a handler for one of the SSL events.

By default, the analyzer uses the above set of ports as a capture filter (See: Section 7.1.2
[Filtering], page 84). It currently checks the SSL handshake process for consistency, tries
to verify seen certificates, generates several events, does connection logging, tries to detect
security weaknesses, and produces simple statistics. It is also able to store seen certificates
on disk. However, it does no decryption, so analysis is limited to clear text SSL records.
This means that analysis stops in the middle of the handshaking phase for SSLv2 and at
the end of it for SSLv3.0/SSLv3.1 (TLS). For this reason we have not implemented the SSL
session caching mechanism (yet).

Chapter 7: Analyzers and Events 145

The analyzer consists of the four files: ssl.bro, ssl-ciphers.bro, ssl-errors.bro,
and ssl-alerts.bro, which are accessed by @load ssl. The analyzer writes to the weird
and ssl log files. The first receives all non-conformant and “weird” activity, while the latter
tracks the SSL handshaking phase.

7.23.1 The x509 record

This record is a very simplified structure for storing X.509 certificate information. It cur-
rently supports only the issuer and subject names.

type x509: record {
issuer: string; # issuer name of the certificate
subject: string; # subject name of the certificate

};

7.23.2 The ssl_connection_info record

The main data structure managed by the SSL analyzer is a collection of ssl_connection_
info records, where the record type is shown below.

type ssl_connection_info: record {
id: count; # the log identifier number
connection_id: conn_id; # IP connection information
version: count; # version associated with connection
client_cert: x509;
server_cert: x509;
id_index: string; # index for associated sessionID
handshake_cipher: count; # cipher suite client and server agreed upon
};

The corresponding fields are Fixme: the description here is out of date:

‘id’ The unique connection identifier assigned to this connection. Connections are
numbered starting at 1 and incrementing with each new connection.

‘connection_id’
The TCP connection which this SSL connection is based on.

‘version ’
The SSL version number for this connection. Possible values are SSLv20, for
SSL version 2.0, SSLv30 for version 3.0, and SSLv31 for version 3.1.

‘client_cert ’
The information from the client certificate, if available.

‘server_cert ’
The information from the server certificate, if available.

‘id_index ’
Index into associated SSL_sessionID_record table.

‘handshake_cipher ’
The cipher suite client and server agreed upon. Note: For SSLv2 cached ses-
sions, this is a placeholder (0xABCD).

Chapter 7: Analyzers and Events 146

7.23.3 SSL variables

The standard script defines the following redefinable variables:

‘ssl_compare_cipherspecs : bool’
If true, remember the client and server cipher specs and perform additional
tests. This costs an extra amount of memory (normally only for a short time)
but enables detection of non-intersecting cipher sets, for example.
Default: T.

‘ssl_analyze_certificates : bool’
If true, analyze certificates seen in SSL connections, which includes the following
steps:
• Generating a hash of the certificate and checking if we already saw it earlier

from the current host. If so, we won’t verify it, because we already did
and verifying is a computational expensive process. If the certificate has
changed for the current host, generate a weird event.

• Verify the certificate.
• Store of the certificate on disk in DER format.

Default: T.

‘ssl_store_certificates : bool’
If certificates are analyzed, this variable determines they should be stored on
disk.
Default: T.

‘ssl_store_cert_path : string’
Path where certificates are stored. If empty, use the current directory. Note:
The path must not end with a slash!
Default: "../certs".

‘ssl_verify_certificates : bool’
If certificates are analyzed, wheter to verify them.
Default: T.

‘x509_trusted_cert_path : string’
Path where OpenSSL looks for trusted certificates. If empty, use the default
OpenSSL path.
Default: "".

‘ssl_max_cipherspec_size : count’
Maximum size in bytes for an SSL cipherspec. If we see attempted use of larger
cipherspecs, warn and skip comparing it.
Default: 45.

‘ssl_store_key_material : bool’
If true, stores key material exchanged in the handshaking phase. Note: This is
mainly for decryption purposes and currently useless.
Default: T.

Chapter 7: Analyzers and Events 147

1046778101.534846 #1 192.168.0.98/32988 >
213.61.126.124/https start
1046778101.534846 #1 connection attempt version: 3.1
1046778101.534846 #1 cipher suites: SSLv3x_RSA_WITH_RC4_128_MD5 (0x4),
SSLv3x_RSA_FIPS_WITH_3DES_EDE_CBC_SHA (0xFEFF),
SSLv3x_RSA_WITH_3DES_EDE_CBC_SHA (0xA),
SSLv3x_RSA_FIPS_WITH_DES_CBC_SHA (0xFEFE),
SSLv3x_RSA_WITH_DES_CBC_SHA(0x9), SSLv3x_RSA_EXPORT1024_WITH_RC4_56_SHA (0x64),
SSLv3x_RSA_EXPORT1024_WITH_DES_CBC_SHA (0x62),
SSLv3x_RSA_EXPORT_WITH_RC4_40_MD5 (0x3),
SSLv3x_RSA_EXPORT_WITH_RC2_CBC_40_MD5 (0x6),
1046778101.753356 #1 server reply, version: 3.1
1046778101.753356 #1 cipher suite: SSLv3x_RSA_WITH_RC4_128_MD5 (0x4),
1046778101.762601 #1 X.509 server issuer: /C=DE/ST=Hamburg/L=Hamburg/O=TC
TrustCenter for Security in Data Networks GmbH/OU=TC
TrustCenter Class 3 CA/Email=certificate@trustcenter.de,
1046778101.762601 #1 X.509 server subject: /C=DE/ST=Berlin/O=Lehmanns
Fachbuchhandlung GmbH/OU=Zentrale EDV/CN=www.jfl.de/Email=admin@lehmanns.de
1046778101.894567 #1 handshake finished, version 3.1, cipher suite:
SSLv3x_RSA_WITH_RC4_128_MD5 (0x4)
1046778104.877207 #1 finish

Used cipher-suites statistics:
SSLv3x_RSA_WITH_RC4_128_MD5 (0x4): 1

Figure 7.1: Example of SSL log file with a single SSL session.

In addition, ssl_log holds the name of the SSL log file to which Bro writes
SSL connection summaries. It defaults to open_log_file("ssl").

The above figure shows an example of how entries in the SSL log file look like. We see
a transcript of the first SSL connection seen since Bro started running. The first line gives
its start and the participating hosts and ports. Next, we see a client trying to attempt a
SSL (Version 3.1) connection and the cipher suites offered. The server replies with a SSL
3.1 SERVER-REPLY and the desired cipher suite. Note: In SSL v3.0/v3.1 this determines
which cipher suite will be used for the connection. Following this is the certificate the server
sends, including the issuer and subject. Finally, we see that the handshaking phase for
this SSL connection is finished now, and that client and server agreed on the cipher suite:
RSA_WITH_RC4_128_MD5. Due to encryption, the SSL analyzer skips all further data. We
only see the end of the connection. When Bro finishes, we get some statistics about the
cipher suites used in all monitored SSL connections.

7.23.4 SSL event handlers

The standard script handles the following events:

Chapter 7: Analyzers and Events 148

‘ssl_conn_attempt (c: connection, version: count, cipherSuites:
cipher_suites_list)’

Invoked upon the client side of connection c when the analyzer sees a CLIENT-
HELLO of SSL version version including the cipher suites the client offers
cipherSuites.
The version can be 0x0002, 0x0300 or 0x0301. A new entry is generated inside
the SSL connection table and the cipher suites are listed. Ciphers, that are
known as weak (according to a corresponding table of weak ciphers) are logged
inside the weak.log file. This also happens to cipher suites that we do not know
yet. Note: See the file ssl-ciphers.bro for a list of known cipher suites.

‘ssl_conn_server_reply (c: connection, version: count, cipherSuites:
cipher_suites_list)’

This event is invoked upon the analyzer receiving a SERVER-HELLO of the SSL
server. It contains the SSL version the server wishes to use (Note: This finally
determines, which SSL version will be used further) and the cipher suite he
offers. If it is SSL version 3.0 or 3.1, the server determines within this SERVER-
HELLO the cipher suite for the following connection (so it will only be one). But
if it’s a SSL version 2.0 connection, the server only announces the cipher suites
he supports and it’s up to the client to decide which one to use.
Again, the cipher suites are listed and weak and unknown cipher suites are
reported inside weak.log.

‘ssl_certificate_seen (c: connection, isServer: int)’
Invoked whenever we see a certificate from client or server but before verifi-
cation of the certificate takes place. This may be useful, if you want to do
something before certificate verification (e.g. do not verify certificates of some
given servers).

‘ssl_certificate (c: connection, cert: x509, isServer: bool)’
Invoked after the certificate from server or client (isServer) has been verified.
Note: We only verify certificates once. If we see them again, we only check
if they have changed! cert holds the issuer and subject of the certificate,
which gets stored inside this SSL connection’s information record inside the
SSL connection table and are written to ssl.log.

‘ssl_conn_reused (c: connection, session_id: string)’
Invoked whenever a former SSL session is reused. session_id holds the session
ID as string of the reused session and is written to ssl.log. Currently we don’t
do session tracking, because SSL version 2.0 doesn’t send the session ID in clear
text when it’s generated.

‘ssl_conn_established (c: connection, version: count, cipher_suite: count)’
Invoked when the handshaking phase of an SSL connection is finished. We see
the used SSL version and the cipher suite that will be used for cryptography
(written to ssl.log) if we have SSL version 3.0 or 3.1. In case of SSL version
2.0 we can only determine the used cipher suite for new sessions, not for reused
ones. (Note: In SSL version 3.0 and 3.1 the cipher suite to be used is already
anounced in the SERVER-HELLO.)

Chapter 7: Analyzers and Events 149

‘ssl_conn_alert (c: connection, version: count, level: count, description:
count)’

Invoked when the analyzer receives an SSL alert. The level of the alert
(warning or fatal) and the description are written into ssl.log. (Note: See
ssl-alerts.bro).

‘ssl_conn_weak (name: string, c: connection)’
This event is called when the analyzer sees:

• weak ciphers (See: ssl_conn_attempt, ssl_server_reply, ssl_conn_
established),

• unknown ciphers (See: ssl_conn_attempt, ssl_server_reply,
ssl_conn_established)

• or certificate verification failed.

See weak.bro.

7.24 The weird Module

The weird module processes unusual or exceptional events. A number of these “shouldn’t”
or even “can’t” happen, yet they do. The general design philosophy of Bro is to check for
such events whenever possible, because they can reflect incorrect assumptions (either Bro’s
or the user’s), attempts by attackers to confuse the monitor and evade detection, broken
hardware, misconfigured networks, and so on.

Weird events are divided into three categories, namely those pertaining to: connections;
flows (a pair of hosts, but for which a specific connection cannot be identified); and net-
work behavior (cannot be associated with a pair of hosts). These categories have a total
of four event handlers: conn_weird, conn_weird_addl, flow_weird, and net_weird, and
in the corresponding sections below we catalog the events handled by each. In addition,
we separately catalog the events generated by the standard scripts themselves (See: Sec-
tion 7.24.8 [Events generated by the standard scripts], page 158). Finally, two more weird
events have their own handlers, in order to associate detailed information with the event:
rexmit_inconsistency and ack_above_hole.

weird_file is the logging file that the module uses to record exceptional events. It
defaults to open_log_file("weird").

Note: While these events “shouldn’t” happen, in reality they often do. For example, of
the 73 listed below, a search of 10 months’ worth of logs at LBNL shows that 42 were seen
operationally. While some of the instances reflect attacks, the great majority are simply due
to i) buggy implementations, ii) diverse use of the network, or iii) Bro bugs or limitations.
Accordingly, you may initially be inclined to log each instance, but don’t be surprised to find
that you soon decide to only record many of them in the weird file, or not record them at
all. (For further discussion, see the section on “crud” in XXX bro-comp-networks-99.)

7.24.1 Actions for “weird” events

The general approach taken by the module is to categorize for each event the action to take
when the event engine generates the event. Table XX summarizes the different possible
actions.

Chapter 7: Analyzers and Events 150

Action Meaning
WEIRD UNSPECIFIEDNo action specified.
WEIRD IGNORE Ignore the event.
WEIRD FILE Record the event to weird file, if it has not been seen for these

hosts before. (But see weird do not ignore repeats.)
WEIRD LOG ALWAYSRecord the event to weird file and generate a real-time alert each

time the event occurs.
WEIRD LOG ONCERecord the event to weird file; generate a real-time alert the first

time the event occurs.
WEIRD LOG PER CONNRecord the event to weird file; generate a real-time alert the first

time it occurs for a given connection.
WEIRD LOG PER ORIGRecord the event to weird file; generate a real-time alert the first

time it occurs for a given originating host.
Table 7.9: Different types of possible actions to take for "weird" events

7.24.2 weird variables

The standard weird script provides the following redefinable variables:

‘weird_action : table[string] of count’
Maps different weird events to actions as given in Table in Section 7.24.1 [Ac-
tions for weird events], page 149 above.

Default: as specified in conn_weird, conn_weird_addl, flow_weird, net_
weird, and Section 7.24.8 [Events generated by the standard scripts], page 158.
As usual, you can change particular values using refinement. For example:

redef weird_action: table[string] of count += {
[["bad_TCP_checksum", "bad_UDP_checksum"]] = WEIRD_IGNORE,
["fragment_overlap"] = WEIRD_LOG_PER_CONN,

};

would specify to ignore TCP and UDP checksum errors (rather than the default
of WEIRD_FILE), and to alert on fragment overlaps once per connection in which
they occur, rather than the default of WEIRD_LOG_ALWAYS.

‘weird_action_filters : table[string] of function(c: connection): count’
Indexed by the name of a weird event, yields a function that when called for
a given connection exhibiting the event, returns an action from the table in
section Section 7.24.1 [Actions for weird events], page 149. A return value
of WEIRD_UNSPECIFIED means “no special action, use the action you normally
would.” This variable thus allows arbitrary customization of the handling of
particular events.

Default: empty, for the weird analyzer itself. The analyzer redefines this vari-
able as follows:

redef weird_action_filters += {
[["bad_RPC", "excess_RPC", "multiple_RPCs",

"partial_RPC"]] = RPC_weird_action_filter,
};

Chapter 7: Analyzers and Events 151

where RPC_weird_action_filter is a function internal to the analyzer that
returns WEIRD_FILE if the originating host is in , and WEIRD_UNSPECIFIED oth-
erwise.

‘weird_ignore_host : set[addr, string]’
Specifies that the analyzer should ignore the given weird event (named by the
second index) if it involves the given address (as either originator or responder
host).
Default: empty.

‘weird_do_not_ignore_repeats : set[string]’
Gives a set of weird events that, if their action is WEIRD_FILE, should still be
recorded to the weird_file each time they occur.
Default: the events relating to checksum errors, i.e., "bad_IP_checksum",
"bad_TCP_checksum", "bad_UDP_checksum", and "bad_ICMP_checksum".
These are recorded multiple times because it can prove handy to be able to
track clusters of checksum errors.

7.24.3 weird functions

The weird analyzer includes the following functions:

‘report_weird (t: time, name: string, id: string, action: count, no log:
bool)’

Processes an occurrence of the weird event name associated with the connection
described by the string id (which may be empty if no connection is associated
with the event). action is the action associated with the event. For report_
weird, the only distinctions made between the different actions are that WEIRD_
IGNORE causes the function to do nothing; any of WEIRD_LOG cause the function
to log a message, unless no_log is true; and WEIRD_UNSPECIFIED causes the
function to look up the action in weird_action. If the function does not find
an action for the event, then it uses WEIRD_LOG_ALWAYS and prepends the log
message with a pair of asterisks (“**”) to flag that this event does not have a
specified action.
For WEIRD_FILE, report_weird only records the event once to the file, unless
the given event is present in weird_do_not_ignore_repeats. Events with
loggable actions are always recorded to weird_file.

‘report_weird_conn (t: time, name: string, id: string, c: connection)’
Processes an occurrence of the weird event name associated with the connection
c, which is described by the string id.
If report_weird_conn finds one of the hosts and the given event name in
weird_ignore_host, then it does nothing. Then, if the event is in weird_
action, then it looks up the event in weird_action_filters and invokes the
corresponding function if present, otherwise taking the action from weird_
action. It then implements the various flavors of WEIRD_LOG by not logging
events more than once per connection, originator host, etc., though the events
are still written to weird_file. Finally, the function invokes to do the actual
recording and/or writing to weird_file.

Chapter 7: Analyzers and Events 152

‘report_weird_orig (t: time, name: string, id: string, orig: addr)’
Processes an occurrence of the weird event name associated with the source
address orig. id textually describes the flow from orig to the destination, for
example using endpoint_id.
The function looks up the event name in weird_action and passes it along to
report_weird.

7.24.4 Events handled by conn_weird

‘conn_weird (name: string, c: connection)’
Invoked for most “weird” events. name is the name of the weird event, and c is
the connection with which it’s associated.

conn_weird handles the following events, all of which have a default action of WEIRD_FILE:

‘active_connection_reuse’
A new connection attempt (initial SYN) was seen for an already-established
connection that has not yet terminated.

‘bad_HTTP_reply’
The first line of a reply from an HTTP server did not include HTTP/version.

‘bad_HTTP_version’
The first line of a request from an HTTP client did not include HTTP/version.

‘bad_ICMP_checksum’
The checksum field in an ICMP packet was invalid.

‘bad_rlogin_prolog’
The beginning of an Rlogin connection had a syntactical error.

‘bad_RPC’ A Remote Procedure Call was ill-formed.

‘bad_RPC_program’
A portmapper RPC call did not include the correct portmapper program num-
ber.

‘bad_SYN_ack’
A TCP SYN acknowledgment (SYN-ack) did not acknowledge the sequence
number sent in the initial SYN.

‘bad_TCP_checksum’
A TCP packet had a bad checksum.

‘bad_UDP_checksum’
A UDP packet had a bad checksum.

‘baroque_SYN’
A TCP SYN was seen with an unlikely combination of other flags (the URGent
pointer).

‘blank_in_HTTP_request’
The URL in an HTTP request includes an embedded blank.

‘connection_originator_SYN_ack’
A TCP endpoint that originated a connection by sending a SYN followed this
up by sending a SYN-ack.

Chapter 7: Analyzers and Events 153

‘data_after_reset’
After a TCP endpoint sent a RST to terminate a connection, it sent some data.

‘data_before_established’
Before the connection was fully established, a TCP endpoint sent some data.

‘excessive_RPC_len’
An RPC record sent over a TCP connection exceeded 8 KB.

‘excess_RPC’
The sender of an RPC request or reply included leftover data beyond what the
RPC parameters or result value themselves consumed.

‘FIN_advanced_last_seq’
A TCP endpoint retransmitted a FIN with a higher sequence number than
previously.

‘FIN_after_reset’
A TCP endpoint sent a FIN after sending a RST.

‘FIN_storm’
The monitor saw a flurry of FIN packets all sent on the same connection. A
“flurry” is defined as 1,000 packets that arrived with less than 1 sec between
successive FINs. Deficiency: Clearly, this numbers should be user-controllable.

‘HTTP_unknown_method’
The method in an HTTP request was not GET, POST or HEAD.

‘HTTP_version_mismatch’
A persistent HTTP connection sent a different version number for a subsequent
item than it did initially.

‘inappropriate_FIN’
A TCP endpoint sent a FIN before the connection was fully established.

‘multiple_HTTP_request_elements’
An HTTP request included multiple methods.

‘multiple_RPCs’
A TCP RPC stream included more than one remote procedure call.

‘NUL_in_line’
A NUL (ASCII 0) was seen in a text stream that is expected to be free of
NULs. Updateme: Currently, the only such stream is that associated with an
FTP control connection.

‘originator_RPC_reply’
The originator (and hence presumed client) of an RPC connection sent an RPC
reply (either instead of a request, or in addition to a request).

‘partial_finger_request’
When a Finger connection terminated, it included a final line of unanalyzed
text because the text was not newline-terminated.

Chapter 7: Analyzers and Events 154

‘partial_ftp_request’
When an FTP connection terminated, it included a final line of unanalyzed text
because the text was not newline-terminated.

‘partial_ident_request’
When an IDENT connection terminated, it included a final line of unanalyzed
text because the text was not newline-terminated.

‘partial_portmapper_request’
A portmapper connection terminated with an unanalyzed request because the
data stream was incomplete.

‘partial_RPC’
An RPC was missing some required header information due to truncation.

‘pending_data_when_closed’
A TCP connection closed even though not all of the data in it was analyzed
due to a sequence hole.

‘possible_split_routing’
Bro appears to be seeing only one direction of some bi-directional connections
. This can also occur due to certain forms of stealth-scanning.

‘premature_connection_reuse’
A TCP connection tuple is being reused less than 30 sec after its previous use.
(The standard requires waiting 2 * MSL = 4 minutes [p. 27] [RFC-793].)

‘repeated_SYN_reply_wo_ack’
A TCP responder that replied to an initial SYN with a SYN-ack has subse-
quently sent a SYN without an acknowledgment.

‘repeated_SYN_with_ack’
A TCP originator that sent an initial SYN has subsequently sent a SYN-ack.

‘responder_RPC_call’
The responder (and hence presumed server) of an RPC connection sent an RPC
request (either instead of a reply, or in addition to a reply).

‘rlogin_text_after_rejected’
An Rlogin client sent additional text to an Rlogin server after the server already
presumably rejected the client’s service request.

‘RPC_rexmit_inconsistency’
An RPC call was retransmitted, and the retransmitted call differed from the
original call. This could reflect an attempt by an attacker to evade the moni-
tor. Note: This type of inconsistency checking is not available for RPC replies
because the transmission of the reply in general marks the end of the RPC con-
nection, and the monitor deletes the connection state shortly afterward.

‘RST_storm’
The monitor saw a flurry of RST packets all sent on the same connection. See
FIN_storm for the definition of “flurry.”

Chapter 7: Analyzers and Events 155

‘RST_with_data’
A TCP RST packet included data. This actually is allowed by the specification
[4.2.2.12] RFC-1122. Deficiency: This event should include the data.

‘simultaneous_open’
The monitor saw a TCP simultaneous open, i.e., both endpoints sent initial
SYNs to one another at the same time. While the specification allows this [p.
30] RFC-793, none of the protocols analyzed by Bro should be using it.

‘spontaneous_FIN’
A TCP endpoint sent a FIN packet without sending any previous packets. This
event can reflect stealth-scanning, but can also occur when Bro has recently
started up and has not seen other traffic on a connection and hence does not
know that the connection already exists.

‘spontaneous_RST’
A TCP endpoint sent a RST packet without sending any previous packets. As
with spontaneous_FIN, this event can reflect either stealth scanning or a Bro
start-up transient.

‘SYN_after_close’
A TCP endpoint sent a SYN (connection initiation) after sending a FIN (con-
nection termination), but before the connection fully closed.

‘SYN_after_partial’
A TCP endpoint in a “partial” connection sent a SYN.

‘SYN_after_reset’
A TCP endpoint sent a SYN after sending a RST (reset connection).

‘SYN_inside_connection’
A TCP endpoint sent a SYN during a connection (or partial connection) on
which it had already sent data.

‘SYN_seq_jump’
A TCP endpoint retransmitted a SYN or a SYN-ack, but with a different
sequence number.

‘SYN_with_data’
A TCP endpoint included data in a SYN packet it sent. Note, this can legiti-
mately occur for T/TCP connections [RFC-1644].

‘TCP_christmas’
A TCP endpoint sent a SYN packet that included the RST flag (a nonsensical
combination). The term “Christmas packet” has been used in this context
(particularly if other flags are set, too) because the packet’s flags are “lit up
like a Christmas tree.”

‘UDP_datagram_length_mismatch’
The length field in a UDP header did not match the length field in the IP
header. This could reflect an attempt by an attacker to evade the monitor.

‘unpaired_RPC_response’
An RPC reply was seen for which no request was seen. This event could reflect
a Bro start-up transient (it started running after the request was sent).

Chapter 7: Analyzers and Events 156

‘unsolicited_SYN_response’
A TCP endpoint sent a SYN-ack without first receiving an initial SYN. This
event could reflect a Bro start-up transient.

7.24.5 Events handled by conn_weird_addl

‘conn_weird_addl (name: string, c: connection, addl: string)’
Invoked for a few “weird” events that require an extra (string) argument to help
clarify the event. Deficiency: It would likely be very handy if the general “weird”
event handling was more flexible, with the ability to have various parameters
associated with the events. Doing so will likely have to wait on general Bro
mechanism for dealing with default parameters and/or polymorphic functions
and event handlers.

conn_weird_addl handles the following events, all of which have a default action of
WEIRD_FILE:

‘bad_ident_reply’
A reply from an IDENT server was syntactically invalid.

‘bad_ident_request’
A request to an IDENT server was syntactically invalid.

‘ident_request_addendum’
An IDENT request included additional text beyond that forming the request
itself.

7.24.6 Events handled by flow_weird

‘flow_weird (name: string, src: addr, dst: addr)’
is invoked for “weird” events that cannot be associated with a particular con-
nection, but only with a pair of hosts, corresponding to a flow of packets from
src to dst. Presently, all of these events deal with fragments.

flow_weird handles the following events:

‘excessively_large_fragment’
A set of IP fragments reassembled to a maximum size exceeding 64,000 bytes.
Note: Sizes between 64,000 and 65,535 bytes are allowed, strictly speaking,
but are highly unlikely in legitimate traffic. Sizes above 65,535 bytes generally
represent attempted denial-of-service attacks, due to IP implementations that
crash upon receiving such impossibly-large fragment sets.
Default: WEIRD_LOG_ALWAYS.

‘excessively_small_fragment’
A fragment other than the last fragment in a set was less than 64 bytes in size.
Note: The standard allows such small fragments, but their presence may reflect
an attacker attempting to evade the monitor by splitting header information
across multiple fragments.
Default: WEIRD_LOG_ALWAYS.

‘fragment_inconsistency’
A fragment overlaps with a previously sent fragment, and the two disagree on
data they share in common. This event could reflect an attacker attempting

Chapter 7: Analyzers and Events 157

to evade the monitor; it can also occur because Bro keeps previous fragments
indefinitely (Deficiency: it needs to provide a means for flushing old fragments,
otherwise it becomes vulnerable to a state-holding attack), and occasionally a
fragment will overlap with one sent much earlier and long-since forgotten by
the endpoints.
Default: WEIRD_LOG_ALWAYS.

‘fragment_overlap’
A fragment overlaps with a previously sent fragment. As for fragment_
inconsistency, this event can occur due to Bro keeping previous fragments
indefinitely. This event does not in general reflect a possible attempt at
evasion.
Default: WEIRD_LOG_ALWAYS.

‘fragment_protocol_inconsistency’
Two fragments were seen for the same flow and IP ID which differed in their
transport protocol (e.g., UDP, TCP). According to the specification, this is
allowed [p. 24] RFC-791, but its use appears highly unlikely.
Default: WEIRD_FILE, because it is difficult to see how an attacker can exploit
this anomaly.

‘fragment_size_inconsistency’
A “last fragment” was seen twice, and the two disagree on how large the re-
assembled datagram should be. This event could reflect an attacker attempting
to evade the monitor.
Default: WEIRD_FILE, since it is more likely that this occurs due to a high
volume flow of fragments wrapping the IP ID space than due to an actual
attack.

‘fragment_with_DF’
A fragment was seen with the “Don’t Fragment” bit set in its header. While
strictly speaking this is not illegal, and not impossible (a router could have
fragmented a packet and then decided that the fragments should not be further
fragmented), its presence is highly unusual.
Default: WEIRD_FILE, because it’s difficult to see how this could reflect malicious
activity.

‘incompletely_captured_fragment’
A fragment was seen whose length field is larger than the fragment datagram
appearing on the monitored link.
Default: WEIRD_LOG_ALWAYS.

7.24.7 Events handled by net_weird

‘net_weird (name: string)’
is invoked for “weird” events that cannot be associated with a particular con-
nection or set of hosts. Except as noted, the default action for all such events
is WEIRD_FILE.

net_weird handles the following events:

Chapter 7: Analyzers and Events 158

‘bad_IP_checksum’
A packet had a bad IP header checksum.

‘bad_TCP_header_len’
The length of the TCP header (which is itself specified in the header) was
smaller than the minimum allowed size.

‘internally_truncated_header’
A captured packet with a valid IP length field was smaller as actually recorded,
such that the captured version of the packet was illegally small. This event may
reflect an error in Bro’s packet capture hardware or software.
Default: WEIRD_LOG_ALWAYS, because this event can indicate a basic problem
with Bro’s packet capture.

‘truncated_IP’
A captured packet either was too small to include a minimal IP header, or the
full length as recorded by the packet capture library was smaller than the length
as indicated by the IP header.

‘truncated_header’
An IP datagram’s header indicates a length smaller than that required for the
indicated transport type (TCP, UDP, ICMP).

7.24.8 Events generated by the standard scripts

The following events are generated by the standard scripts themselves:

‘bad_pm_port’
See pm_bad_port. Handled by conn_weird_addl, where the extra parameter
is the text "port <bad-port>".
Land_attack A TCP connection attempt was seen with identical initiator and
responder addresses and ports. This event likely reflects an attempted denial-
of-service attack known as a “Land” attack. See check_spoof. Handled by
conn_weird.

7.24.9 Additional handlers for “weird” events

In addition to the above, generalized events, Bro includes two specific events that are defined
by themselves so they can include additional parameterization:

‘rexmit_inconsistency (c: connection, t1: string, t2: string)’
Invoked when a retransmission associated with connection c differed in its data
from the contents transmitted previously. t1 gives the original data and t2 the
different retransmitted data.
This event may reflect an attacker attempting to evade the monitor. Unfor-
tunately, however, experience has shown that (i) inconsistent retransmissions
do in fact happen due to (appalling) TCP implementation bugs, and (ii) once
they occur, they tend to cascade, because often the source of the bug is that
the two endpoints have become desynchronized.
The handler logs the message in the format "id rexmit inconsistency (<t1>)
(<t2>)" . However, the handler only logs the first instance of an inconsistency,
due to the cascade problem mentioned above.

Chapter 7: Analyzers and Events 159

Deficiency: The handler is not told which of the two connection endpoints was
the faulty transmitter.

‘ack_above_hole (c: connection, t1: string, t2: string)’
Invoked when Bro sees a TCP receiver acknowledge data above a sequence
hole. In principle, this should never occur. Its presence generally means one of
two things: (i) a TCP implementation with an appalling bug (these definitely
exist), or (ii) a packet drop by Bro’s packet capture facility, such that it never
saw the data now being acknowledged.
Because of the seriousness of this latter possibility, the handler logs a message
ack above a hole. Note: You can often distinguish between a truly broken TCP
acknowledgment and Bro dropping packets by the fact that in the latter case you
generally see a cluster of ack-above-a-hole messages among otherwise unrelated
connections.
Deficiency: The handler is not told which of the two connection endpoints sent
the acknowledgment.

7.25 The icmp Analyzer

not done.

7.26 The stepping Analyzer

not done.

7.27 The ssh-stepping Module

not done.

7.28 The backdoor Analyzer

not done.

7.29 The interconn Analyzer

not done.

Chapter 8: Signatures 160

8 Signatures

8.1 Overview

In addition to the policy language, Bro provides another language which is specifally de-
signed to define signatures. Signatures precisly describe how network traffic looks for certain,
well-known attacks. As soon as a attack described by a signature is recognized, Bro may
generate an event for this signature match which can then be analyzed by a policy script.
To define signatures, Bro’s language provides several powerful constructs like regular ex-
pressions and dependencies between multiple signatures.

Signatures are independent of Bro’s policy scripts and, therefore, are put into their own
file(s). There two ways to specify which files contain signatures: By using the -s flag when
you invoke Bro, or by extending the Bro variable signatures_files using the += operator.
If a signature file is given without a path, it is searched along . The default extension of
the file name is .sig which Bro appends automatically.

8.2 Signature language

Each individual signature has the format

signature id { attribute-set }

id is an unique label for the signature. There are two types of attributes: conditions and
actions. The conditions define when the signature matches, while the actions declare what
to do in the case of a match. Conditions can be further divided into four types: header,
content, dependency, and context. We will discuss these in more detail in the following
subsections.

This is an example of a signature:

signature formmail-cve-1999-0172 {
ip-proto == tcp
dst-ip == 1.2.0.0/16
dst-port = 80
http /.*formmail.*\?.*recipient=[^&]*[;|]/
event "formmail shell command"
}

8.2.1 Conditions

8.2.1.1 Header conditions

Header conditions limit the applicability of the signature to a subset of traffic that contains
matching packet headers. For TCP, this match is performed only for the first packet of a
connection. For other protocols, it is done on each individual packet. There are pre-defined
header conditions for some of the most used header fields:

‘address-list ’
Destination address of IP packet (may include CIDR masks for specifying net-
works)

Chapter 8: Signatures 161

‘integer-list ’
Destination port of TCP or UDP packet

‘protocol-list ’
IP protocol; protocol may be tcp, udp, or icmp.

‘address-list ’
Source address of IP packet (may include CIDR masks for specifying networks)

‘integer-list ’
Source port of TCP or UDP packet

comp is one of ==, !=, <, <=, >, >=. All lists are comma-separated values of the given
type which are sequentially compared against the corresponding header field. If at least
one of the comparisions evaluates to true, the whole header condition matches (exception:
if comp is !=, the header condition only matches if all values differ). address is an dotted
IP address optionally followed by a CIDR/mask to define a subnet instead of an individual
address. protocol is either one of ip, tcp, udp and icmp, or an integer.

In addition to this pre-defined short-cuts, a general header condition can be defined
either as

header proto[offset:size] comp value-list

or as
header proto[offset:size] & integer comp value-list

This compares the value found at the given position of the packet header with a list of
values. offset defines the position of the value within the header of the protocol defined by
proto (which can ip, tcp, udp oricmp. size is either 1, 2, or 4 and specifies the value to
have a size of this many bytes. If the optinal & integer is given, the packet’s value is first
masked with the integer before it is compared to the value-list. comp is one of ==, !=, <,
<=, >, >=. value-list is a list of comma-separated integers similar to those described above.
The integers within the list may be followed by an additional /mask where mask is a value
from 0 to 32. This correponds to the CIDR notation for netmasks and is translated into
a corresponding bitmask which is applied to the packet’s value prior to the comparision
(similar to the optional & integer).

Putting all together, this is an example which is aequivalent to dst-ip == 1.2.3.4/16,
5.6.7.8/24:

header ip[16:4] == 1.2.3.4/16, 5.6.7.8/24

8.2.1.2 Content conditions

Content conditions are defined by regular expressions. We differentiate two kinds of content
conditions: first, the expression may be declared with the payload statement, in which case
it is matched against the raw payload of a connection (for reassembled TCP streams) or of
a each packet. Alternatively, it may be prefixed with an analyzer-specific label, in which
case the expression is matched against the data as extracted by the corresponding analyzer.

A payload condition has the form
payload /regular expression/

Currently, the following analyzer-specific content conditions are defined (note that the
corresponding analyzer has to be activated by loading its policy script):

Chapter 8: Signatures 162

‘http-request /regular expression/ ’
The regular expression is matched against decoded URIs of the HTTP requests.

‘http-request-header /regular expression/ ’
The regular expression is matched against client-side HTTP headers.

‘http-reply-header /regular expression/ ’
The regular expression is matched against server-side HTTP headers.

‘ftp /regular expression/ ’
The regular expression is matched against the command line input of FTP
sessions.

‘finger /regular expression/ ’
The regular expression is matched against the finger requests.

For example, http /(etc/(passwd|shadow)/ matches any URI containing either
etc/passwd or etc/shadow.

8.2.1.3 Dependency conditions

To define dependencies between different signatures, there are two conditions:

‘requires-signature [! id]’
Defines the current signature to match only if the signature given by id matches
for the same connection. Using ‘!’ negates the condition: The current signature
only matches if id does not match for the same connection (this decision is
necessarily deferred until the connection terminates).

‘requires-reverse-signature [! id]’
Similar to requires-signature, but id has to match for the other direction
of the same connections than the current signature. This allows to model the
notion of requests and replies.

8.2.1.4 Context conditions

Context conditions pass the match decision on to various other components of Bro. They
are only evaluated if all other conditions have already matched. The following context
conditions are defined:

‘eval policy function ’
The given policy function is called and has to return a boolean indicating
the match result. The function has to be of the type function cond(state:
signature_state): bool. See \f{fig:signature-state} for the definition of
signature_state.

type signature_state: record {
id: string; # ID of the signature
conn: connection; # Current connection
is_orig: bool; # True if current endpoint is originator
payload_size: count; # Payload size of the first pkt of curr. endpoint
};

Figure 8.1: Definition of the signature_state record

Chapter 8: Signatures 163

‘ip-options’
Not implemented currently.

‘payload-size comp_integer ’
Compares the integer to the size of the payload of a packet. For reassembled
TCP streams, the integer is compared to the size of the first in-order payload
chunk. Note that the latter is not well defined.

‘same-ip ’
Evaluates to true if the source address of the IP packets equals its destination
address.

‘tcp-state state-list ’
Poses restrictions on the current TCP state of the connection. state-list is a
comma-separated list of established (the three-way handshake has already
been performed), originator (the current data is send by the originator of the
connection), and responder (the current data is send by the responder of the
connection).

8.2.2 Actions

Actions define what to do if a signature matches. Currently, there is only one action defined:
event string raises a signature_match event. The event handler has the following type:

event signature_match(state: signature_state, msg: string, data:
string)

See \f{fig:signature-state} for a description of signature_state. The given string is
passed as msg, and data is the current part of the payload that has eventually lead to the
signature match (this may be empty for signatures without content conditions).

8.3 snort2bro

The open-source IDS Snort provides an extensive library of signatures. The Python script
{snort2bro} converts Snort’s signature into Bro signatures. Due to different internal archi-
tectures of Bro and Snort, it is not always possible to keep the exact semantics of Snort’s
signatures, but most of the time it works very well.

To convert Snort signatures into Bro’s format, snort2bro needs a workable Snort con-
figuration file (snort.cfg) which, in particular, defines the variables used in the Snort
signatures (usally things like $EXTERNAL_NET or $HTTP_SERVERS). The conversion is per-
formed by calling snort2bro [-I dir] snort.cfg where the directory optionally given by
-I contains the files imported by Snort’s include statement. The converted signature set is
written to standard output and may be redirected to a file. This file can then be evaluated
by Bro using the -s flag or the signatures_files variable.

Deficiency:snort2bro does not know about some of the newer Snort signature options
and ignores them (but it gives a warning).

Chapter 9: Interactive Debugger 164

9 Interactive Debugger

9.1 Debugger Overview

Bro’s interactive debugger is intended to aid in the development, testing, and maintenance of
policy scripts. The debugger’s interface has been modeled after the popular gdb debugger;
the command syntax is virtually identical. While at present the Bro debugger supports
only a small subset of gdb’s features, these were chosen to be the most commonly used
commands. Additional features beyond those of gdb, such as wildcarding, have been added
to specifically address needs created by Bro policy scripts.

9.2 A Sample Session

The transcript below should look very familiar to those familiar with gdb. The debugger’s
command prompt accepts debugger commands; before each prompt, the line of policy code
that is next to be executed is displayed.

First we activate the debugger with the -d command-line switch.

bobcat:~/bro/bro$./bro -d -r slice.trace mt
Policy file debugging ON.
In bro_init() at policy/ftp.bro:437
437 have_FTP = T;

Next, we set a breakpoint in the connection_finished event handler [reference this
somehow]. A breakpoint causes the script’s execution to stop when it reaches the specified
function. In this case, there are many event handlers for the connection_finished event,
so we are given a choice.

(Bro [0]) break connection_finished
Setting breakpoint on connection_finished:

There are multiple definitions of that event handler.
Please choose one of the following options:
[1] policy/conn.bro:268
[2] policy/active.bro:14
[3] policy/ftp.bro:413
[4] policy/demux.bro:40
[5] policy/login.bro:496
[a] All of the above
[n] None of the above
Enter your choice: 1
Breakpoint 1 set at connection_finished at policy/conn.bro:268

Now we resume execution; when the breakpoint is reached, execution stops and the
debugger prompt returns.

(Bro [1]) continue
Continuing.
Breakpoint 1, connection_finished(c = ’[id=[orig_h=1.0.0.163,
orig_p=2048/tcp, resp_h=1.0.0.6, resp_p=23/tcp], orig=[size=0,

Chapter 9: Interactive Debugger 165

state=5], resp=[size=46, state=5], start_time=929729696.316166,
duration=0.0773319005966187, service=, addl=, hot=0]’) at
policy/conn.bro:268
In connection_finished(c = ’[id=[orig_h=1.0.0.163, orig_p=2048/tcp,
resp_h=1.0.0.6, resp_p=23/tcp], orig=[size=0, state=5], resp=[size=46,
state=5], start_time=929729696.316166, duration=0.0773319005966187,
service=, addl=, hot=0]’) at policy/conn.bro:268
268 if (c$orig$size == 0 || c$resp$size == 0)

We now step through a few lines of code and into the record_connection call.

(Bro [2]) step
274 record_connection(c, "finished");
(Bro [3]) step
In record_connection(c = ’[id=[orig_h=1.0.0.163, orig_p=2048/tcp,
resp_h=1.0.0.6, resp_p=23/tcp], orig=[size=0, state=5], resp=[size=46,
state=5], start_time=929729696.316166, duration=0.0773319005966187,
service=, addl=, hot=0]’, disposition = ’finished’) at
policy/conn.bro:162
162 local id = c$id;
(Bro [4]) step
163 local local_init = to_net(id$orig_h) in local_nets;

We now print the value of the id variable, which was set in the previously executed
statement local id = c$id;. We follow that with a backtrace (bt) call, which prints a trace
of the currently-executing functions and event handlers (along with their actual arguments).
We then remove the breakpoint and continue execution to its end (the remaining output
has been trimmed off).

(Bro [5]) print id
[orig_h=1.0.0.163, orig_p=2048/tcp, resp_h=1.0.0.6, resp_p=23/tcp]
(Bro [6]) bt
#0 In record_connection(c = ’[id=[orig_h=1.0.0.163, orig_p=2048/tcp,
resp_h=1.0.0.6, resp_p=23/tcp], orig=[size=0, state=5],
resp=[size=46, state=5], start_time=929729696.316166,
duration=0.0773319005966187, service=, addl=, hot=0]’, disposition =
’finished’) at policy/conn.bro:163
#1 In connection_finished(c = ’[id=[orig_h=1.0.0.163, orig_p=2048/tcp,
resp_h=1.0.0.6, resp_p=23/tcp], orig=[size=0, state=5],
resp=[size=46, state=5], start_time=929729696.316166,
duration=0.0773319005966187, service=, addl=, hot=0]’) at
policy/conn.bro:274
(Bro [7]) delete
Breakpoint 1 deleted
(Bro [8]) continue
Continuing.
...

Chapter 9: Interactive Debugger 166

9.3 Usage

The Bro debugger is invoked with the -d command-line switch. It is strongly recommended
that the debugger be used with a tcpdump capture file as input (the -r switch) rather than
in “live” mode, so that results are repeatable.

Execution tracing is a feature which generates a complete record of which code state-
ments are executed during a given run. It is enabled with the -t switch, whose argument
specifies a file which will contain the trace.

Debugger commands all are a single word, though many of them take additional argu-
ments. Commands may be abbreviated with a prefix (e.g., fin for finish); if the same
prefix matches multiple commands, the debugger will list all that match. Certain very
frequently-used commands, such as next, have been given specific one-character shortcuts
(in this case, n). For more details on all the debugger commands, see the Reference in
section Section 9.5 [Reference], page 166, below.

The debugger’s prompt can be activated in three ways. First, when the -d switch is
supplied, Bro stops in the bro_init initialization function (more precisely, after global-
scope code has been executed; see section Section 9.4 [Notes and Limitations], page 166). It
is also activated when a breakpoint is hit. Breakpoints are set with the break command (see
the Reference). The final way to invoke the debugger’s prompt is to interrupt execution by
pressing Ctrl-C (sending an Interrupt signal to the process). Execution will be suspended
after the currently-executing line is completed.

9.4 Notes and Limitations• Statements at global scope, i.e., those executed before the bro_init function, may not
be debugged at present. This is because those statements load declarations for other
functions needed for the debugger to function properly.

9.5 Reference

large Summary of Commands Note: all commands may be abbreviated with a unique prefix.
Shortcuts below are special exceptions to this rule.

Chapter 9: Interactive Debugger 167

Command Shortcut Description
help Get help with debugger commands
quit Exit Bro
next n Step to the following statement, skipping function

calls
step s Step to following statements, stepping in to function

calls
continue c Resume execution of the policy script
finish Run until the currently-executing function completes
break b Set a breakpoint
condition Set a condition on an existing breakpoint
delete d Delete the specified breakpoints; delete all if no

arguments
disable Turn off the specified breakpoint; do not delete

permanently
enable Undo a prior ‘disable’ command
info Get information about the debugging environment
print p Evaluate an expression and print the result
set Alias for ‘print’
backtrace bt Print a stack trace
frame Select frame number N
up Select the stack frame one level up from the current

one
down Select the stack frame one level down from the cur-

rent one
list l Print source lines surrounding specified context
trace Turn on or off execution tracing

Table 9.1: Debugger Commands

Getting Help

‘help’ Help for each command may be invoked with the help command. Calling the
command with no arguments displays a one-line summary of each command.

Command-Line Options

‘-d switch’
The -d switch enables the Bro script debugger.

‘-t switch’
The -t enables execution tracing. There is an argument to the switch, which
indicates a file that will contain the result of the trace. Trace output consists
of the source code lines executed, indented for each nested function invocation.

Example. The following command invokes Bro, using tcpdump_file for the
input packets and outputting the result of the trace to execution_trace.

./bro -t execution_trace -r tcpdump_file policy_script.bro

Chapter 9: Interactive Debugger 168

Example. If the argument to -t is a single dash character (“-”), then the trace
output is sent to stderr.

./bro -t - -r tcpdump_file policy_script.bro

Example. Lastly, execution tracing may be combined with the debugger. Here
we send output to stderr, so it will be intermingled with the debugger’s output.
Tracing may be turned off and on in the debugger using the trace command.

./bro -d -t - -r tcpdump_file policy_script.bro

Running the Script

‘quit’ Exit Bro, aborting execution of the currently executing script.

‘restart (r)’
(Currently Unimplemented) Restart the execution of the script, rewinding to the
beginning of the input file(s), if appropriate. Breakpoints and other debugger
state are preserved.

‘continue (c)’
Resume execution of the script file. The script will continue running until
interrupted by a breakpoint or a signal.

‘next (n)’ Execute one statement, without entering any subroutines called in that state-
ment.

‘step (s)’ Execute one statement, but stop on entry to any called subroutine.

‘finish’ Run until the currently executing function returns.

Breakpoints

‘break (b)’
Set a breakpoint. A breakpoint suspend execution when execution reaches a
particular location and returns control to the debugger. Breakpoint locations
may be specified in a number of ways:
break With no argument, the current line is used.
break [FILE:]LINE The specified line in the specified file; if no policy file

is specified, the current file is implied.
break FUNCTION The first line of the specified function or event han-

dler. If more than one event handler matches the
name, a choice will be presented.

break WILDCARD Similar to FUNCTION, but a POSIX-compliant reg-
ular expression (see the regex(3) man page)is sup-
plied, which is matched against all functions and
event handlers. One exception to the the POSIX
syntax is that, as in the shell, the * character may
be used to match zero or more of any character with-
out a preceding period character (.).

‘condition N expression ’
The numeric argument N indicates which breakpoint to add a condition to,
and the expression is the conditional expression. A breakpoint with a condition

Chapter 9: Interactive Debugger 169

will only stop execution when the supplied condition is true. The condition will
be evaluated in the context of the breakpoint’s location when it is reached.

‘enable’ With no arguments, enable all breakpoints previously disabled with the disable
command. If numeric arguments separated by spaces are provided, the break-
points with those numbers will be enabled.

‘disable’ With no arguments, disable all breakpoints. Disabled breakpoints will not
stop execution, but will be retained to be enabled later. If numeric arguments
separated by spaces are provided, the breakpoints with those numbers will be
disabled.

‘delete (d)’
With no arguments, permanently delete all breakpoints. If numeric arguments
separated by spaces are provided, the breakpoints with those numbers will be
deleted.

Debugger State

‘info’ Give information about the current script and debugging environment. A sub-
command should follow the info command to indicate which information is
desired. At present, the following subcommands are available:
info break List all breakpoints and their status

Inspecting Program State

‘print (p) / set’
The print command and its alias, set, are used to evaluate any expression in
the policy script language. The result of the evaluation is printed out. Results
of the evaluation affect the current execution environment; expressions may
include things like assignment. The expression is evaluated in the context of
the currently selected stack frame. The frame, up, and down commands (below)
are used to change the currently selected frame, which defaults to the innermost
one.

‘backtrace (bt)’
Print a description of all the stack frames (function invocations) of the currently
executing script.\ With no arguments, prints out the currently selected stack
frame.\ With a numeric argument +/- N, prints the innermost N frames if the
argument is positive, or the outermost N frames if the argument is negative.

‘frame’ With no arguments, prints the currently selected frame. \ With a numeric
argument N, selects frame N. Frame numbers are numbered inside-out
from 0; the

‘up’ Select the stack frame that called the currently selected one. If a numeric
argument N is supplied, go up that many frames.

‘down’ Select the stack frame called by the currently selected one. If a numeric argu-
ment N is supplied, go down that many frames.

‘list (l)’ With no argument, print the ten lines of script source code following the pre-
vious listing. If there was no previous listing, print ten lines surrounding the

Chapter 9: Interactive Debugger 170

next statement to be executed. If an argument is supplied, ten lines are printed
around the location it describes. The argument may take one of the following
forms:
[FILE:]LINE The specified line in the specified file; if no policy file is specified,
the current file is implied. \ FUNCTION The first line of the specified function
or event handler. If more than one event handler matches the name, a choice
will be presented. \ $\pm N$ With a numeric argument preceded by a plus or
minus sign, the line at the supplied offset from the previously selected line.

Chapter 10: Missing Documentation 171

10 Missing Documentation

This chapter holds stubs for subjects that have yet to be documented. Some of these are
actually already somewhat covered elsewhere in the manual. In addition, a major missing
piece for the manual is the Bro language itself; below we mention some Bro language topics
that come up elsewhere in the current version of the manual.

10.1 The use of prefixes

10.2 The tcpdump save file that Bro writes

10.3 The bro.init initialization file

10.4 Assignment operators such as +=

10.5 The notion of redefinition/refinement

10.6 The logging model

10.7 Timer management

10.8 SYN-FIN filtering

10.9 Split routing

10.10 Scan dropping

10.11 Operator precedence

10.12 Partial connections

10.13 Packet drops

10.14 The load directive

10.15 Global statements

10.16 Inserting tables into tables

10.17 Demultiplexing

Chapter 10: Missing Documentation 172

10.18 Bro init file

10.19 Hostnames vs. addresses

10.20 The hot-report script

10.21 Use of libpcap/BPF

See: bpf,pcap refs XXX

10.22 The problem of evasion

See: ptacek98 paper XXX

10.23 Backscatter

10.24 Playing back traces

10.25 Discarders

10.26 Differences between this release and the previous one

10.27 Alert cascade

10.28 The need for subtyping

E.g., src addr vs. dst addr, perhaps using attributes.

10.29 The need for CIDR masks

10.30 The wish list

10.31 Known bugs

Chapter 11: References 173

11 References

• [RFC2373] R. Hinden and S. Deering, IP Version 6 Addressing Architecture, RFC-2373,
Jul. 1998.

• [MJ93] S. McCanne and V. Jacobson, The BSD Packet Filter: A New Architecture for
User-level Packet Capture, Proc.1993 Winter USENIX Conference, San Diego, CA.

• [MLJ94] S. McCanne, C. Leres and V. Jacobson, libpcap, available via anonymous ftp
from http://www.tcpdump.org, 1994.

• [Pa98] V. Paxson, Bro: A System for Detecting Network Intruders in Real-Time, Proc.
7th USENIX Security Symposium, Jan. 1998.

• [Pa99] V. Paxson, Bro: A System for Detecting Network Intruders in Real-Time, Com-
puter Networks: special issue on intrusion detection, 31(23–24), pp. 2435-2463, Dec.
1999.

• [PN98] T. Ptacek and T. Newsham, Insertion, Evasion, and Denial of
Service: Eluding Network Intrusion Detection, Secure Networks, Inc.,
http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps, Jan. 1998.

• [RFC791] J. Postel, Internet Protocol, RFC-791, Sep. 1981.
• [RFC793] J. Postel, Transmission Control Protocol, RFC-793, Sep. 1981.
• [RFC854] J. Postel and J. Reynolds, Telnet Protocol Specification, May 1983.
• [RFC855] J. Postel and J. Reynolds, Telnet Option Specifications, RFC-855, May 1983.
• [RFC959] J. Postel and J. Reynolds, File Transfer Protocol (FTP), RFC-959, Oct.

1985.
• [RFC1013] R. Scheifler, X Window System Protocol, version 11: Alpha update, RFC-

1013, Apr. 1987.
• [RFC1094] Sun Microsystems, NFS: Network File System Protocol specification, RFC-

1094, Mar. 1989.
• [RFC1122] B. Braden, Requirements for Internet hosts - communication layers, RFC-

1122, Oct. 1989.
• [RFC1282] B. Kantor, BSD Rlogin, RFC-1282, Dec. 1991.
• [RFC1288] D. Zimmerman, The Finger User Information Protocol, RFC-1288, Dec.

1991.
• [RFC1413] M. St. Johns, Identification Protocol, RFC-1413, Jan. 1993.
• [RFC1644] B. Braden, T/TCP – TCP Extensions for Transactions Functional Specifi-

cation, RFC-1644, Jul. 1994.
• [RFC1813] B. Callaghan, B. Pawlowski, P. Staubach, NFS Version 3 Protocol Specifi-

cation, RFC-1813, June 1995.
• [RFC1831] R. Srinivasan, RPC: Remote Procedure Call Protocol Specification Version

2, RFC-1831, Aug. 1995.
• [RFC1832] R. Srinivasan, XDR: External Data Representation Standard, RFC-1832,

Aug. 1995.
• [RFC1939] J. Myers and M. Rose, Post Office Protocol - Version 3, RFC-1939, May

1996.

http://www.tcpdump.org
http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps

Chapter 11: References 174

• [RFC1945] T. Berners-Lee, R. Fielding and H. Frystyk, Hypertext Transfer Protocol –
HTTP/1.0, RFC-1945, May 1996.

• [RFC2616] J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, Hypertext
Transfer Protocol – HTTP/1.1, RFC-2626, Jun. 1999.

• [YKSRL00] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen, SSH Con-
nection Protocol, Internet Draft draft-ietf-secsh-connect-07.txt, May 2000.

• [SSLv2] Kipp E.B. Hickman, The SSL Protocol, Netscape Communications Corp.
http://wp.netscape.com/eng/security/SSL 2.html, February 1995.

• [SSLv30] Alan O. Freier, Philip Karlton, Paul C. Kocher, The SSL Protocol Version
3.0, Internet Draft draft-freier-ssl-version3-02.txt, November 1996.

• [TLSv1] T. Dierks, C. Allen, “ The TLS Protocol Version 1.0,” RFC-2246, January
1999.

• [SSL-FIPS] Nelson Bolyard, Wan-Teh Chang, FIPS SSL CipherSuites,
http://www.mozilla.org/projects/security/pki/nss/ssl/fips-ssl-ciphersuites.html,
June 2001.

• [SSL-AES] P. Chown, Advanced Encryption Standard (AES) Ciphersuites for Trans-
port Layer Security (TLS), RFC-3268, June 2002.

• [TLS-56] John Banes, Richard Harrington, 56-bit Export Cipher Suites For TLS, In-
ternet Draft draft-ietf-tls-56-bit-ciphersuites-00.txt, April 1999.

• [X509] R. Housley, W. Polk, W. Ford, D. Solo, Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile, RFC-3280, June 2002.

http://www.mozilla.org/projects/security/pki/nss/ssl/fips-ssl-ciphersuites.html

Chapter 11: Index 175

Index

$
$$ record constructor operator 42
$$ record field access operator 42

&
& or short-circuit"|"| short-circuit “or”. . . . 15, 38
& short-circuit&& short-circuit “and” 15, 38
& z not", “not” operator . 15

=
== equality operator== equality operator 16,

38, 41
== inequality operator", = inequality operator

. 16, 38, 41
== less-than operator< less-than operator 16,

38
== less-than-or-equal operator<= less-or-equal

operator . 16, 38
== z operator> greater-than operator 16, 38
== zz operator>= greater-or-equal operator . . . 16,

38

?
?$?$ record field test . 42

A
aborted execution . 12
absolute time . 19
access, allowable /16 network pairs 99
access, allowable address pairs 99
access, allowable services . 100
access, fatal inbound services 101
access, forbidden attempted services 102
access, forbidden inbound services 101
access, forbidden services . 101
access, sensitive /24 destination networks 100
access, sensitive /24 source networks 100
access, sensitive destination addresses 99
access, sensitive source addresses 99
access, service allowed to a particular host 100
access, service allowed to particular host pairs

. 100
acknowledgment holes . 159
add expression . 36
addition, numeric . 16
addition, temporal . 20
additional information associated with a

connection . 89, 94
address masking . 22, 79, 82
address scanning . 104

address type . 21, 22
address type, constants . 21
address type, operators . 22
addresses, hot destinations 99
addresses, hot sources . 99
addresses, in a connection . 93
addresses, local . 97, 98
addresses, mapping to hostnames 13
addresses, neighbor . 98
allowable /16 network pairs 99
allowable address pairs . 99
altering log files . 126
analysis, bidirectional vs. unidirectional 154
analysis, off-line . 9, 10, 80, 97
analysis, on-line 8, 10, 74, 80, 97
analyzers . 84, 159
analyzers, activating . 84
analyzers, application-specific 111, 142
analyzers, filtering . 84, 86
analyzers, finger . 112
analyzers, finger, event handlers 112
analyzers, finger, variables 111, 112
analyzers, ftp, event handlers 117, 118
analyzers, ftp, functions . 117
analyzers, ftp, variables 115, 117
analyzers, generic . 87, 97
analyzers, hot, functions 102, 104
analyzers, hot, variables 99, 102
analyzers, http, event handlers 120
analyzers, http, variables 119, 120
analyzers, ident, event handlers 121
analyzers, ident, variables 121
analyzers, instantiating . 84
analyzers, login, event handlers 131, 136
analyzers, login, functions 130, 131
analyzers, login, variables 125, 129
analyzers, portmapper, event handlers . . . 140, 142
analyzers, portmapper, functions 138, 140
analyzers, portmapper, variables 137, 138
analyzers, scan, event handlers 106, 107
analyzers, scan, functions . 106
analyzers, scan, variables 104, 105
analyzers, site-specific information 97, 98
analyzers, SSL, event handlers. 147, 149
analyzers, SSL, variables 146, 147
analyzers,loading . 84
and operator&& “and” operator 15, 38
anticode.com . 126
any type, replacing with union type 78
any type“any” type . 33
appending to a file . 79
array, associative . 25
array, multi-dimensional . 26
ASCII, as usual character set 17
assigning records. 24

Chapter 11: Index 176

associative array . 25
attack, Land . 102
attackers, weenie . 113
attacks, smurf . 126
attempted connections . 90
attempted services, forbidden 102
attributes . 45
authentication dialog 78, 81, 122, 123
authentication, accepted. 135
authentication, rejected . 135
authentication, skipped . 135
avoiding processing . 81

B
backdoor, avoiding false positives 126
backdoor, prompts . 126
backdoor, triggered by ephemeral port. 127
backdoor, triggered by terminal type 126
backspace character . 76
beginning time of a connection 89, 93
bidirectional vs. unidirectional analysis 154
big endian . 77
BIND, non-blocking DNS lookups 5
booleans . 15
Bourne shell . 81
BPF (Berkeley Packet Filter), tuning 6
BPF buffers, ensuring they are large. 6
break expression . 35
Bro bugs/limitations, causing “weird” events . . 149
bro suffix.bro suffix . 12
Bro!references . 2
Bro, checkpointing . 11
Bro, execution aborted . 12
Bro, installing . 5
Bro, interactive use . 7
Bro, not running as root. 6
Bro, optimizer . 11
Bro, private caches . 11
Bro, running . 5
Bro, search path . 12
Bro, source code . 5
Bro, system configuration . 6
Bro, usage . 10
Bro, version . 11
Bro, watchdog . 12
Bro, web page . 5
Bro, wedging . 12
bro-dns-cache.bro-dns-cache 109
BS. 76
buffer overflow tools . 126
buffers, large for BPF . 6
buggy implementations, causing “weird” events

. 149
bugs, $ pattern operator not supported 19
bugs, appalling . 158, 159
bugs, causing “weird” events. 149
bugs,tcpdump . 86

building Bro . 5
bytes in connection . 93, 95

C
caches, Bro’s private ones . 11
casting, not provided in Bro 33
Central Intelligence Agency, detection 100
character set, ASCII . 17
checkpointing Bro . 11
checksum error, ICMP . 152
checksum error, IP . 157
checksum error, TCP . 152
checksum error, UDP . 152
Christmas packet . 155
CIA detection . 100
CIDR . 22, 79, 82, 98
cleanup event . 86
client port, triggering a backdoor 127
clock time . 76, 79
Cold Fusion exploits . 119
command shell . 81
command shell, setuid root 126
compiling Bro . 5
completed connections . 91
compound expression . 36
concatenation of strings . 75
confused login analysis . 123
confusion of heuristics . 123
connection events, TCP-specific 90
connection ID . 95
connection record . 88
connection size, undetermined for RST termination

. 117
connection, additional information 89, 94
connection, addresses . 88, 93
connection, analysis 87, 98, 142
connection, attempt . 90
connection, bytes . 89, 93, 95
connection, completion . 91
connection, definitions . 90
connection, detecting sensitive 102
connection, duration . 89, 93
connection, establishment . 90
connection, events . 90
connection, finished . 91
connection, flags . 93
connection, functions . 95
connection, generic analysis 87
connection, half finished . 91
connection, hosts . 93
connection, hot . 89, 97, 131
connection, hot analysis . 98
connection, ICMP . 90
connection, ID . 96
connection, initiator . 88
connection, logging . 97
connection, new . 90

Chapter 11: Index 177

connection, non-existing . 82
connection, originator . 88
connection, partial . 91
connection, partial close . 92
connection, pending . 92
connection, ports . 88
connection, recording . 97
connection, rejected . 91
connection, reset . 92
connection, reuse . 154
connection, sensitivity . 89
connection, sequence numbers 78
connection, service . 89, 95, 97
connection, simultaneous open 155
connection, size . 89, 93, 95
connection, start time . 89, 93
connection, state . 89, 93, 95
connection, summaries . 93
connection, TCP. 90
connection, terminating with extreme prejudice

. 97
connection, UDP . 90
connection: testing for existence 75
connectivity, dropping 105, 106
constant . 37
constant variables . 36
constants, address . 21
constants, boolean . 15
constants, count . 15
constants, floating-point . 16
constants, hostname . 21
constants, integer . 15
constants, interval . 19, 20
constants, net . 22
constants, pattern . 18
constants, port . 21
constants, record . 23, 24
constants, string . 17
constants, temporal . 19
constants, time . 19, 20
control packets (SYN/FIN/RST) 11, 92
copy, shallow vs. deep . 24, 29
corrupted packets . 152, 157
creating directories. 79
crud . 91, 149

D
daemons, as innocuous user names 121
data, unanalyzed . 154
day interval unit . 19
debugging,filtering problems 86
decrement . 37
deep copy . 24, 29
default values . 27
default, filtering . 85
DEL . 75, 76
delete character . 75

delete expression . 36
denial of service, excessively large fragments . . 156
denial of service, Land attack 158
detecting scans . 104
detecting sensitive connections 102
dev/bpf . 6
directories, creating . 79
directory names, sensitive 125
diverse network use, causing “weird” events . . . 149
division, numeric . 16
division, temporal . 20
DMZ, spoof detection . 99
DNS lookups, non-blocking . 5
DNS!Bro’s private cache, forcing access to 11
DNS, Bro’s private cache . 109
DNS, mappings . 110
dotted quads . 13
drop-connectivity shell script-connectivity shell

script . 106
dropping connectivity. 105, 106
duration of a connection 89, 93
dynamic defaults . 27

E
editing . 76
eggdrop . 115
encrypted login sessions . 135
encryption, leading to “excessive lines” 134
endian issues . 77
enumerations . 17
environment, accessing . 78
ephemeral port . 96
ephemeral port, triggering a backdoor 127
ephemeral ports, confused with sensitive services

. 101
escape sequences . 17
established connections . 90
etc/inetd.conf/etc/inetd.conf 101
etc/passwd . 119
etc/shadow . 119
evasion, authentication dialog 122
evasion, excessively small fragments 156
evasion, inconsistent fragment size 157
evasion, inconsistent fragments. 156
evasion, inconsistent RPC retransmission 154
evasion, inconsistent TCP retransmission 158
evasion, inserting NULs . 17
evasion, length mismatch . 155
evasion, using tunneling . 133
event engine . 32
event expression . 34
event handler, invocation . 32
event handlers . 33
event handling, weird 152, 159
event type . 32, 33
events, exceptional . 149, 159
events, finish . 86

Chapter 11: Index 178

events, general Bro processing 86
events, generic TCP connection 90
events, initialization . 86
events, scheduling . 40
events, startup . 86
events, termination . 86
exceptional events . 149, 159
excessively long lines . 133
excluding hosts . 85
executables, running . 81
expiration, timer . 40, 75
explicit typing . 44
exploit scans . 143
exploits, buffer overflow . 126
exploits, Unix . 125
expression . 34
expressions . 42
expressions|(. 37

F
F . 15
failure of heuristics . 123
fetch utility . 126
file type . 30, 31
filenames, sensitive . 115, 125
files, appending . 79
files, opening . 79
filtering, default . 85
filters . 84, 86
filters, displaying . 85
filters,errors . 86
FIN control packet . 11, 92
Finger, analysis . 111
Finger, weird events . 153
finish event . 86
firewall, reactive . 105, 106
flags of connection . 93
flex utility . 18
for expression . 35
forcing access to Bro’s private DNS cache 11
format, precision . 77
format, width . 77
formatting text . 77
forward . 115
fragment reassembly . 112
fragments, excessively large 156
fragments, excessively small 156
fragments, inconsistent . 156
fragments, inconsistent protocols 157
fragments, inconsistent sizes 157
fragments, overlapping . 157
fragments, TCP vs. UDP 112
frogs, dissecting . 119
ftp session summary file . 116
FTP, analysis . 114
FTP, ephemeral ports confused with sensitive

services . 101

FTP, log file . 116

FTP, session information . 114

FTP, weird events . 153

function invocation . 38

function type . 31, 32

functions . 31, 32

functions, anonymous . 39

functions, redefining . 32

functions, site-specific . 98

G

general Bro processing events 86

general scripting . 79

generic connection analysis 87

global scope, of enumerations 17

global variables . 43

H

half-finished connections . 91

handling signals . 87

headers, truncated . 158

help message . 10

heuristics, confusion . 123

heuristics, extracting username information . . 122,
123

horizontal exploit scans . 143

host order (vs. network order) 77

hostnames. 21

hostnames, mapping addresses to 13

hosts, excluding . 85

hosts, in a connection . 93

hot /24 destination networks 100

hot /24 source networks . 100

hot connection, analysis . 98

hot connections . 131

hot destination addresses . 99

hot detection . 102

hot source addresses . 99

hot usernames . 113

hr (hours) interval unit . 19

HTTP methods. 119

HTTP packets, contents not being recorded 11

http session summary file . 119

HTTP, analysis . 119

HTTP, log file . 119

HTTP, weird events. 152

Chapter 11: Index 179

I
ICMP, checksum error . 152
ICMP, connections . 90
ICMP, timeout . 90
ICMP, weird events . 152
ID of connection . 95, 96
IDENT, analysis . 120
IDENT, weird events . 156
if expression . 35
implicit typing . 44
in operator operator . 19
in2 operator", in negation of operator 19
inbound services, fatal . 101
inbound services, forbidden 101
inconsistent acknowledgment 159
inconsistent retransmission 154, 158
increment . 37
index, of a table . 25
inetd.conf.conf . 101
inferring types . 44
information associated with a connection . . . 89, 94
initialization event . 86
initialization of variables . 45
input, analysis . 121
input, editing . 125
installing Bro . 5
integers, network vs. host order 77
internal networks, spoof detection 99
Internet Relay Chat (IRC), attacker subpopulation

. 125
interval units, day . 19
interval units, hr . 19
interval units, min . 19
interval units, sec . 19
interval units, usec . 19
invocation, function . 38
invoking event handlers . 32
IP, checksum error . 157
IP, fragments . 156
IP, weird events . 157
IPv4/IPv6 address constants 21
IPv6 and lack of CIDR prefixes 22
IPv6 support . 21

K
keystrokes, analysis . 121
keystrokes, editing . 125
kiddies, script . 99

L
Land attack . 102, 158
large BPF buffers . 6
left parenthesis operator(operator 37, 38
length mismatch, UDP . 155
length, of strings . 75
length, of table or set . 78

lex utility . 18

libpcap buffer size patch . 6

line editing . 76

Linux, compiling Bro under . 5

Linux, super exploit. 126

little endian . 77

live traffic . 34, 80

load, shedding . 81

local . 36

local addresses . 97, 98

local addresses, spoofing 99, 102

local variables . 36, 43

log expression . 34

log file . 74, 78, 107

log file, altering . 126

log file, connection summary (red) 97

log file, FTP . 116

log file, HTTP . 119

log file, signatures . 143

log file, SSL . 147

log file, weird events . 149

logging, connection . 97

logging, control of . 75

logical negation . 15

login analysis, confusion . 123

login session . 121

login session, state . 78, 81

ls . 126

lynx utility . 126

M

magic terminal types . 126

management, of state . 28

masking . 79, 82

maximum . 79

Maximum Segment Lifetime (MSL) 154

memory management . 28

min (minutes) interval unit 19

minimum . 79

modifiability of variables . 44

modules, dns, event handlers 110, 111

modules, dns, variables . 110

MSL (Maximum Segment Lifetime) 154

multi-dimensional table . 26

multiplication, numeric . 16

multiplication, temporal . 20

Chapter 11: Index 180

N
name, of log file . 78
names, case-sensitive . 23
Napster, tunneled over Telnet or Rlogin 133
negation . 37
negation, logical . 15
negation, temporal . 20
neighbor addresses . 98
net type . 22
net, constants . 22
net, operators . 22
network cleanup event . 86
Network File System (NFS) 137
network interfaces . 8, 10, 74
network order (vs. host order) 77
network prefixes 22, 82, 97, 98
network statistics . 87
Network Virtual Terminal (NVT) 134
networks, hot destinations 100
networks, hot sources . 100
new connection . 90
next expression . 35
NFS (Network File System) 137
NFS traffic, high volume fragments. 112
non-blocking DNS lookups . 5
not in operator", in negation of operator 19
not operator", “not” operator. 15
NT, not supported . 5
NUL . 75
null expression. 36
NULs . 153
NULs, allowed in strings 17, 82
NULs, disallowed in certain function calls 82
NULs, terminating string constants 17
NULs, termination . 82
number of elements, in table or set 78
numeric types, count . 14
numeric types, double . 14
numeric types, int . 14
NVT (Network Virtual Terminal) 134
NVT options, authentication 135
NVT options, bad . 134
NVT options, bad termination 135
NVT options, encryption . 135
NVT options, inconsistent 134

O
off-line analysis . 9, 10, 80, 97
on-line analysis 8, 10, 74, 80, 97
opening a file . 79
operator, and&& “and” 15, 38
operator, left parenthesis(parenthesis 37, 38
operator, not", “not” . 15
operator, or"|"| “or” . 15, 38
operator, right parenthesis) parenthesis 37, 38
operators, address . 22
operators, arithmetic . 16

operators, arithmetic, associativity 16
operators, arithmetic, operand conversion 16
operators, arithmetic, precedence 16
operators, comparison . 16
operators, comparison, associativity 16
operators, comparison, operand conversion 16
operators, comparison, precedence 16
operators, logical . 15
operators, logical, associativity 15
operators, logical, precedence 15
operators, net . 22
operators, pattern . 18
operators, ports . 21
operators, string . 17
operators, temporal . 20
optimizer for policy script interpreter 11
optimizing your system for Bro 6
options, Telnet . 122
or operator"|"| “or” operator 15, 38

P
packet filter, access . 6
packet filter, permissions . 6
packets, control (SYN/FIN/RST). 11, 92
packets, corrupted . 152, 157
packets, drops . 87, 159
packets, recording. 81
packets, storms . 153
packets, time . 79
parentheses operators() 37, 38
partial connections . 91
partially closed connections 92
passwords, guessing . 104
passwords, inadvertently exposed 122
passwords, sniffing . 122
pattern matching . 18
pattern matching, embedded 19
pattern matching, exact . 19
patterns . 18, 19
pending connections . 92
percent modulus operator . 16
performance, analysis tradeoffs 84
performance, filtering . 84
policy directories . 12
policy script interpreter, optimizer 11
policy/ policy directory . 12
policy/local/local/ policy directory 12
polymorphic functions, need for 79, 156
port scanning . 104
port type . 21
port, ephemeral . 96
ports, constants . 21
ports, operators . 21
ports, TCP . 21
ports, TCP vs. UDP . 78
ports, UDP . 21

Chapter 11: Index 181

possible future changes, breaking string constants
across multiple lines . 17

possible future changes, constants for absolute
times . 19

possible future changes, type 41
possible future changes, use of any type for

bypassing strong typing 33
precision, of formatted strings 77
predefined functions . 75, 83
predefined variables . 46, 75
prefixes . 10, 12
prefixes, network 22, 82, 97, 98
priming Bro’s private DNS cache 11
print expression . 34
processing, avoiding . 81

R
reactive firewall . 105, 106
reading tcpdump files files . 10
record, connection . 88
record, ftp port . 80
recorded traffic . 80
recording connections . 97
recording packets . 81
records . 23
records, assignment . 24
records, fields . 23
records, fields, accessing . 24
records, fields, legal names . 23
redefining functions . 32
redefining variables . 45
refinement . 45
rejected connections . 91
relationals, address. 21
relationals, net . 22
relationals, numeric . 16
relationals, string . 17
relationals, temporal . 20
relative time . 19
remote procedure call (RPC) 136
reset connections . 92
restricting traffic . 85
retransmission, inconsistent 154, 158
return expression . 35
rhosts . 115, 122, 123, 129, 131
right parenthesis operator) operator 37, 38
Rlogin, session state . 78, 81
Rlogin, sessions . 121
Rlogin, weird events . 152
root, backdoors . 125
root, Bro not running as. 6
root, setuid . 126
routing, split . 154
RPC (Remote Procedure Call) 136
RPC (Remote Procedure Call), reserved multicast

address . 138
RPC (Remote Procedure Call), weird events . . 152

RST control packet . 11, 92
RST termination, causing undetermined

connection size . 117
running Bro . 5
running outside scripts or executables 81

S
save file, control over what’s recorded 81
save file, reading . 10
save file, writing . 11
scalars . 25
scan detection . 104, 107
scanning, address . 104
scanning, port . 104
scanning, shutting down 105, 106
scanning, stealth 91, 106, 154, 155
scans, exploit . 143
scheduling events . 40
scoping of variables . 43
script kiddies . 99
scripting, general . 79
scripts, running . 81
scripts, standard . 84, 159
search path. 12
searching for strings . 18
sec (seconds) interval unit . 19
semi-colon statement termination 34
sensitive /24 destination networks 100
sensitive /24 source networks 100
sensitive destination addresses 99
sensitive filenames . 125
sensitive information, inadvertently exposed . . 122
sensitive services, confused with ephemeral ports

. 101
sensitive source addresses . 99
sensitive usernames . 113
sensitivity associated with a connection 89
sequence numbers, connection originator 78
sequence numbers, connection responder 78
service associated with a connection . . . 89, 93, 95,

97
services, allowable . 100
services, allowed to a particular host 100
services, allowed to particular host pairs 100
services, fatal if inbound . 101
services, forbidden . 101
services, forbidden if attempted 102
services, forbidden if inbound 101
set size . 78
set type . 29, 30
setuid root . 126
shadowing . 86
shallow copy . 24, 29
shedding load . 81
shell escape . 81
shell scripts, drop-connectivity-connectivity . . . 106
short-circuit1-circuit && “and” operator . . . 15, 38

Chapter 11: Index 182

short-circuit2-circuit "|"| “or” operator 15, 38
shutting down scans . 105, 106
SIGHUP . 87
SIGINT . 87
signal handling . 87
signature analysis . 143
signatures, log file . 143
SIGTERM . 87
simultaneous open . 155
site addresses . 98
site-specific, functions . 98
site-specific, information . 97
site-specific, variables . 97, 98
size of connection . 93, 95
size, of table or set . 78
smurf attacks . 126
sniffer logs . 126
sniffing. 122
source code, for Bro . 5
split routing . 154
spoofing, allowable services 99
spoofing, detection . 99, 102
SSL session summary file . 147
SSL, analysis . 144
SSL, connection information 145
SSL, log file . 147
SSL, x509 . 145
standard scripts . 84, 159
start time of a connection 89, 93
startup, event . 86
startup, transients . 155
state management . 28
state of connection . 93, 95
state, of a Telnet/Rlogin session 78, 81
statements . 34, 36
statements, multi-line . 34
statements, semi-colon temmination 34
static typing . 14
statistical analysis . 142
stderr . 74, 107
stdout . 34
stealth scans 91, 106, 154, 155
storms . 153
string constants, NUL terminated 17
string, extraction . 81
string, formatting . 77
strings . 17
strings, cleaned up . 75
strings, concatenation . 75
strings, length . 75
strings, termination with NULs 82
sub-tables, lack of. 28
subnets . 22, 79, 82, 97, 98
substrings . 81
subtraction, numeric . 16
subtraction, temporal . 20
SYN control packet . 11, 92
syslog . 34

system configuration . 6

T
T . 15
T/TCP . 155
table size . 78
tables . 25, 29
tables, clearing entries. 29
TCP control packets (SYN/FIN/RST) 11, 92
TCP vs. UDP ports . 78
TCP Wrappers, reset vs. rejected connections . . 91
TCP, analysis . 92
TCP, checksum error . 152
TCP, Christmas packet . 155
TCP, connections . 90
TCP, corrupted header . 158
TCP, events . 90
TCP, fragments . 112
TCP, transaction . 155
TCP, weird events . 152
TCP-specific connection events 90
tcpdump,bugs . 86
Telnet, options . 122
Telnet, options, authentication 135
Telnet, options, bad . 134
Telnet, options, bad termination 135
Telnet, options, encryption 135
Telnet, options, inconsistent 134
Telnet, session state . 78, 81
Telnet, sessions . 121
temporal, addition . 20
temporal, constants . 19
temporal, division . 20
temporal, multiplication . 20
temporal, negation . 20
temporal, relationals . 20
temporal, subtraction . 20
temporal, types . 19
TERM . 87
terminating connections forcibly 97
termination event . 86
text, formatting . 77
TFreak . 126
time . 19, 20
time, clock . 76, 79
time, packet . 79
timer expiration . 40, 75
timers . 40
timestamps, mapping to readable form 13
trace file, control over what’s recorded 81
trace file, reading . 10
trace file, writing . 11
traffic, live vs. recorded 34, 80
traffic, restricting . 85
transaction TCP . 155
transients, startup . 155
trojaning . 126

Chapter 11: Index 183

truncated headers . 158
tunneling . 133
type casting, not provided in Bro 33
type inference . 44
types, addr . 14
types, bool . 14, 15
types, conversion . 15
types, conversion, automatic 15
types, count . 14, 15
types, double . 14, 15
types, enum . 14, 17
types, enumeration . 14
types, event . 14
types, file . 14
types, function . 14
types, int . 14, 15
types, interval . 14, 19
types, net . 14
types, numeric . 14, 15, 16
types, numeric, bool not numeric 16
types, numeric, intermixing 16
types, overview . 14
types, pattern . 14, 18
types, port . 14
types, record . 14
types, set . 14
types, string . 14, 17
types, table . 14
types, temporal . 14
types, time . 14, 19
typing of variables . 44
typing, static . 14

U
UDP, analysis . 92
UDP, checksum error . 152
UDP, connections“connections” 90
UDP, fragments . 112
UDP, length mismatch . 155
UDP, timeout . 90
UDP, weird events . 152
unanalyzed data . 154
undirectional analysis . 154
union type, need for . 78
Unix analysis . 121
Unix support . 5
Unix timestamps . 13
unusual events . 149, 159
unusual events, prevalence in actual network traffic

. 149
usage message . 10
usec (microseconds) interval unit 19
user keystrokes, analysis . 121
user keystrokes, editing. 125

usernames, extracting 122, 123
usernames, sensitive. 113
usr/local/lib/bro/usr/local/lib/bro/ policy

directory . 12
utilities, fetch . 126
utilities, flex . 18
utilities, lex . 18
utilities, ls . 126
utilities, lynx . 126

V
values, overview . 14
vantage point . 154
variable . 37
variables, attributes . 45
variables, constant . 36
variables, initialization . 45
variables, local. 36
variables, modifiability . 44
variables, overview . 43
variables, redefining . 45
variables, refinement . 45
variables, scope . 36
variables, scoping . 43
variables, typing . 44
version message . 11
vertical exploit scans . 143

W
walld . 137, 138, 141
watchdog . 12
weird event summary file . 149
weird events . 149, 159
weird events, actions . 149
weird events, additional handlers 158
weird events, generated by standard scripts . . . 158
weird events, handled by conn weird 152
weird events, handled by conn weird addl 156
weird events, handled by flow weird 156
weird events, handled by net weird 157
weird events, prevalence in actual network traffic

. 149
whitespace, in statements . 34
width, of formatted strings 77
Windows, not supported . 5
write file, control over what’s recorded 81
writing tcpdump files . 11

Y
yield, of a table . 25
ypserv . 138

Variable Index

A
active_conn . 46
alert_action_filters . 46
alert_file . 46
anon_log . 46

B
backdoor_demux_disabled 47
backdoor_demux_skip_tags 47
backdoor_ignore_dst_addrs 47

backdoor_ignore_src_addrs 47
backdoor_log . 46
backdoor_min_7bit_ascii_ratio 47
backdoor_min_bytes . 47
backdoor_min_normal_line_ratio 46
backdoor_min_num_lines . 46

P
preserved_net . 46
preserved_subnet . 46

Function Index

A

active_connection . 75

R

root_servers . 69

	Figures and Tables
	Introduction
	Getting Started
	Running Bro
	Building and installing Bro
	Supported platforms
	The Bro source code distribution
	Installing Bro
	Tuning BPF

	Using Bro interactively
	Specifying policy scripts
	Running Bro on network traffic
	Live traffic
	Traffic traces

	Modifying Bro policy
	Bro flags and run-time environment
	Flags
	Run-time environment

	Helper utilities
	Scripts
	The hf utility
	The cf utility

	Values, Types, and Constants
	Values Overview
	Bro Types
	Type Conversions

	Booleans
	Boolean Constants
	Logical Operators

	Numeric Types
	Numeric Constants
	Mixing Numeric Types
	Arithmetic Operators
	Comparison Operators

	Enumerations
	Strings
	String Constants
	String Operators

	Patterns
	Pattern Constants
	Pattern Operators
	Exact Pattern Matching
	Embedded Pattern Matching

	Temporal Types
	Temporal Constants
	Temporal Operators
	Temporal Negation
	Temporal Addition
	Temporal Subtraction
	Temporal Multiplication
	Temporal Division
	Temporal Relationals

	Port Type
	Port Constants
	Port Operators

	Address Type
	Address Constants
	Address Operators

	Net Type
	Net Constants
	Net Operators

	Records
	Defining records
	Record Constants
	Accessing Fields Using ``$''
	Record Assignment

	Tables
	Declaring Tables
	Initializing Tables
	Table Attributes
	Accessing Tables
	Table Assignment
	Deleting Table Elements

	Sets
	Files
	Functions
	Event handlers
	The any type

	Statements and Expressions
	Statements
	Expressions

	Global and Local Variables
	Variables Overview
	Scope
	Modifiability
	Typing
	Initialization
	Attributes
	Refinement

	Predefined Variables and Functions
	Predefined Variables
	active.bro
	alert.bro
	anon.bro
	backdoor.bro
	bro.init
	code-red.bro
	conn.bro
	demux.bro
	dns.bro
	dns-mapping.bro
	finger.bro
	ftp.bro
	hot.bro
	hot-ids.bro
	http.bro
	http-abstract.bro
	http-request.bro
	icmp.bro
	ident.bro
	interconn.bro
	login.bro
	mime.bro
	ntp.bro
	port-names.bro
	portmapper.bro
	rules.bro
	scan.bro
	site.bro
	smtp.bro
	smtp-relay.bro
	software.bro
	ssh.bro
	stepping.bro
	tftp.bro
	udp.bro
	weird.bro
	worm.bro
	Uncategorized

	Predefined Functions
	Run-time errors for non-existing connections
	Run-time errors for strings with NULs
	Functions for manipulating strings
	Functions for manipulating time

	Analyzers and Events
	Activating an Analyzer
	Loading Analyzers
	Filtering

	General Processing Events
	Generic Connection Analysis
	The connection record
	Definitions of connections
	Generic TCP connection events
	The tcp analyzer
	The udp analyzer
	Connection summaries
	Connection functions

	Site-specific information
	Site variables
	Site-specific functions

	The hot Analyzer
	hot variables
	hot functions

	The scan Analyzer
	scan variables
	scan functions
	scan event handlers

	The port-name Module
	The mt Module
	The log Module
	The active Module
	The demux Module
	The dns Module
	The dns_mapping record
	dns variables
	dns event handlers

	The finger Analyzer
	finger variables
	finger event handlers

	The frag Module
	The hot-ids Module
	The ftp Analyzer
	The ftp_session_info record
	ftp variables
	ftp functions
	ftp event handlers

	The http Analyzer
	http variables
	http event handlers

	The ident Analyzer
	ident variables
	ident event handlers

	The login Analyzer
	login analyzer confusion
	login variables
	login functions
	login event handlers

	The portmapper Analyzer
	portmapper variables
	portmapper functions
	portmapper event handlers

	The analy Analyzer
	The signature Module
	The SSL Analyzer
	The x509 record
	The ssl_connection_info record
	SSL variables
	SSL event handlers

	The weird Module
	Actions for ``weird'' events
	weird variables
	weird functions
	Events handled by conn_weird
	Events handled by conn_weird_addl
	Events handled by flow_weird
	Events handled by net_weird
	Events generated by the standard scripts
	Additional handlers for ``weird'' events

	The icmp Analyzer
	The stepping Analyzer
	The ssh-stepping Module
	The backdoor Analyzer
	The interconn Analyzer

	Signatures
	Overview
	Signature language
	Conditions
	Header conditions
	Content conditions
	Dependency conditions
	Context conditions

	Actions

	snort2bro

	Interactive Debugger
	Debugger Overview
	A Sample Session
	Usage
	Notes and Limitations
	Reference

	Missing Documentation
	The use of prefixes
	The tcpdump save file that Bro writes
	The bro.init initialization file
	Assignment operators such as +=
	The notion of redefinition/refinement
	The logging model
	Timer management
	SYN-FIN filtering
	Split routing
	Scan dropping
	Operator precedence
	Partial connections
	Packet drops
	The load directive
	Global statements
	Inserting tables into tables
	Demultiplexing
	Bro init file
	Hostnames vs. addresses
	The hot-report script
	Use of libpcap/BPF
	The problem of evasion
	Backscatter
	Playing back traces
	Discarders
	Differences between this release and the previous one
	Alert cascade
	The need for subtyping
	The need for CIDR masks
	The wish list
	Known bugs

	References
	Index

